Package: dbscan 1.2-0-1

dbscan: Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Related Algorithms

A fast reimplementation of several density-based algorithms of the DBSCAN family. Includes the clustering algorithms DBSCAN (density-based spatial clustering of applications with noise) and HDBSCAN (hierarchical DBSCAN), the ordering algorithm OPTICS (ordering points to identify the clustering structure), shared nearest neighbor clustering, and the outlier detection algorithms LOF (local outlier factor) and GLOSH (global-local outlier score from hierarchies). The implementations use the kd-tree data structure (from library ANN) for faster k-nearest neighbor search. An R interface to fast kNN and fixed-radius NN search is also provided. Hahsler, Piekenbrock and Doran (2019) <doi:10.18637/jss.v091.i01>.

Authors:Michael Hahsler [aut, cre, cph], Matthew Piekenbrock [aut, cph], Sunil Arya [ctb, cph], David Mount [ctb, cph], Claudia Malzer [ctb]

dbscan_1.2-0-1.tar.gz
dbscan_1.2-0-1.zip(r-4.5)dbscan_1.2-0-1.zip(r-4.4)dbscan_1.2-0-1.zip(r-4.3)
dbscan_1.2-0-1.tgz(r-4.4-x86_64)dbscan_1.2-0-1.tgz(r-4.4-arm64)dbscan_1.2-0-1.tgz(r-4.3-x86_64)dbscan_1.2-0-1.tgz(r-4.3-arm64)
dbscan_1.2-0-1.tar.gz(r-4.5-noble)dbscan_1.2-0-1.tar.gz(r-4.4-noble)
dbscan_1.2-0-1.tgz(r-4.4-emscripten)dbscan_1.2-0-1.tgz(r-4.3-emscripten)
dbscan.pdf |dbscan.html
dbscan/json (API)
NEWS

# Install 'dbscan' in R:
install.packages('dbscan', repos = c('https://mhahsler.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/mhahsler/dbscan/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

clusteringdbscandensity-based-clusteringhdbscanlofopticscpp

15.60 score 317 stars 81 packages 1.7k scripts 34k downloads 49 mentions 31 exports 2 dependencies

Last updated 7 days agofrom:5ebf94ec2f. Checks:1 OK, 4 ERROR, 4 FAILURE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 10 2025
R-4.5-win-x86_64ERRORJan 12 2025
R-4.5-linux-x86_64ERRORJan 12 2025
R-4.4-win-x86_64ERRORJan 12 2025
R-4.4-mac-x86_64OUTDATEDDec 12 2024
R-4.4-mac-aarch64OUTDATEDDec 12 2024
R-4.3-win-x86_64ERRORJan 12 2025
R-4.3-mac-x86_64OUTDATEDDec 12 2024
R-4.3-mac-aarch64OUTDATEDDec 12 2024

Exports:adjacencylistas.dendrogramas.reachabilityaugmentclplotcompscoredistdbcvdbscanextractDBSCANextractFOSCextractXifrNNglancegloshhdbscanhullplotis.corepointjpclustkNNkNNdistkNNdistplotlofmrdistnclusternnoiseopticspointdensitysNNsNNclusttidy

Dependencies:genericsRcpp

Fast Density-based Clustering (DBSCAN and OPTICS)

Rendered fromdbscan.Rnwusingutils::Sweaveon Jan 10 2025.

Last update: 2022-12-25
Started: 2017-02-02

HDBSCAN with the dbscan package

Rendered fromhdbscan.Rmdusingknitr::rmarkdownon Jan 10 2025.

Last update: 2024-06-26
Started: 2017-03-17

Readme and manuals

Help Manual

Help pageTopics
Find Connected Components in a Nearest-neighbor Graphcomponents comps comps.dist comps.frNN comps.kNN comps.sNN
Density-Based Clustering Validation Index (DBCV)DBCV dbcv
DBCV Paper DatasetsDataset_1 Dataset_2 Dataset_3 Dataset_4 DBCV_datasets
Density-based Spatial Clustering of Applications with Noise (DBSCAN)DBSCAN dbscan is.corepoint predict.dbscan_fast print.dbscan_fast
Turn an dbscan clustering object into a tidy tibbleaugment augment.dbscan augment.general_clustering augment.hdbscan dbscan_tidiers glance glance.dbscan glance.general_clustering glance.hdbscan tidy tidy.dbscan tidy.general_clustering tidy.hdbscan
Coersions to Dendrogramas.dendrogram as.dendrogram.default as.dendrogram.hclust as.dendrogram.hdbscan as.dendrogram.reachability dendrogram
DS3: Spatial data with arbitrary shapesDS3
Framework for the Optimal Extraction of Clusters from HierarchiesextractFOSC
Find the Fixed Radius Nearest Neighborsadjacencylist.frNN frNN frnn print.frNN print.frnn sort.frNN
Global-Local Outlier Score from HierarchiesGLOSH glosh
Hierarchical DBSCAN (HDBSCAN)coredist HDBSCAN hdbscan mrdist plot.hdbscan predict.hdbscan print.hdbscan
Plot Clustersclplot hullplot
Jarvis-Patrick Clusteringjpclust print.general_clustering
Find the k Nearest Neighborsadjacencylist.kNN kNN knn print.kNN sort.kNN
Calculate and Plot k-Nearest Neighbor DistanceskNNdist kNNdistplot
Local Outlier Factor ScoreLOF lof
Moons Datamoons
Number of Clusters, Noise Points, and Observationsncluster nnoise nobs
NN - Nearest Neighbors Superclassadjacencylist adjacencylist.NN NN plot.NN sort.NN
Ordering Points to Identify the Clustering Structure (OPTICS)as.dendrogram.optics as.reachability.optics extractDBSCAN extractXi OPTICS optics plot.optics predict.optics print.optics
Calculate Local Density at Each Data Pointdensity pointdensity
Reachability Distancesas.reachability as.reachability.dendrogram plot.reachability print.reachability reachability reachability_plot
Find Shared Nearest Neighborsprint.sNN sNN snn sort.sNN
Shared Nearest Neighbor ClusteringsNNclust snnclust