Package: stream 2.0-2.1

stream: Infrastructure for Data Stream Mining

A framework for data stream modeling and associated data mining tasks such as clustering and classification. The development of this package was supported in part by NSF IIS-0948893, NSF CMMI 1728612, and NIH R21HG005912. Hahsler et al (2017) <doi:10.18637/jss.v076.i14>.

Authors:Michael Hahsler [aut, cre, cph], Matthew Bolaños [ctb], John Forrest [ctb], Matthias Carnein [ctb], Dennis Assenmacher [ctb], Dalibor Krleža [ctb]

stream_2.0-2.1.tar.gz
stream_2.0-2.1.zip(r-4.5)stream_2.0-2.1.zip(r-4.4)stream_2.0-2.1.zip(r-4.3)
stream_2.0-2.1.tgz(r-4.4-x86_64)stream_2.0-2.1.tgz(r-4.4-arm64)stream_2.0-2.1.tgz(r-4.3-x86_64)stream_2.0-2.1.tgz(r-4.3-arm64)
stream_2.0-2.1.tar.gz(r-4.5-noble)stream_2.0-2.1.tar.gz(r-4.4-noble)
stream_2.0-2.1.tgz(r-4.4-emscripten)stream_2.0-2.1.tgz(r-4.3-emscripten)
stream.pdf |stream.html
stream/json (API)
NEWS

# Install 'stream' in R:
install.packages('stream', repos = c('https://mhahsler.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/mhahsler/stream/issues

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:stream-2.0-2(2024-04-21)

data-stream-clusteringdatastreamstream-miningcpp

9.74 score 38 stars 3 packages 135 scripts 925 downloads 5 mentions 111 exports 24 dependencies

Last updated 4 months agofrom:a42de98fdc. Checks:OK: 7 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 25 2024
R-4.5-win-x86_64NOTEDec 25 2024
R-4.5-linux-x86_64NOTEDec 25 2024
R-4.4-win-x86_64OKDec 25 2024
R-4.4-mac-x86_64OKDec 25 2024
R-4.4-mac-aarch64OKDec 25 2024
R-4.3-win-x86_64OKDec 25 2024
R-4.3-mac-x86_64OKDec 25 2024
R-4.3-mac-aarch64OKDec 25 2024

Exports:%>%add_clusteradd_keyframeagreementanimate_clusteranimate_datachange_alphaclose_streamdescriptionDSAggregateDSAggregate_SampleDSAggregate_WindowDSCDSC_BICODSC_BIRCHDSC_DBSCANDSC_DBSTREAMDSC_DStreamDSC_EADSC_evoStreamDSC_HierarchicalDSC_KmeansDSC_MacroDSC_MicroDSC_RDSC_ReachabilityDSC_SampleDSC_SlidingWindowDSC_StaticDSC_TwoStageDSC_WindowDSClassifierDSClassifier_SlidingWindowDSDDSD_BarsAndGaussiansDSD_BenchmarkDSD_CubesDSD_GaussiansDSD_MemoryDSD_MGDSD_MixtureDSD_mlbenchDataDSD_mlbenchGeneratorDSD_NULLDSD_RDSD_ReadCSVDSD_ReadDBDSD_ReadStreamDSD_ScaleStreamDSD_TargetDSD_UniformNoiseDSFDSF_ConvolveDSF_DownsampleDSF_dplyrDSF_ExponentialMADSF_FeatureSelectionDSF_FuncDSF_ScaleDSFPDSOutlierDSOutlier_DBSTREAMDSOutlier_DStreamDSRegressorDSRegressor_SlidingWindowDSTDST_MultiDST_RunnerDST_SlidingWindowDST_WriteStreamevaluate_staticevaluate_streamfilter_difffilter_Hammingfilter_MAfilter_Sincget_assignmentget_attractionget_centersget_clustersget_copyget_keyframesget_macroclustersget_macroweightsget_microclustersget_microweightsget_modelget_pointsget_shared_densityget_weightskeyframeMGCMGC_FunctionMGC_LinearMGC_NoiseMGC_RandomMGC_StaticmicroToMacronclusterspow2prune_clustersreadDSCreclusterremove_clusterremove_inforemove_keyframereset_streamsaveDSCShape_BlockShape_Gaussianwrite_stream

Dependencies:BHclassclueclusterclusterGenerationdbscanDEoptimRdiptestflexmixfpcgenericskernlablatticemagrittrMASSmclustmlbenchmodeltoolsnnetprabclusproxyRcpprobustbaserpart

stream: Extending the stream Framework

Rendered fromextending_stream.Rnwusingutils::Sweaveon Dec 25 2024.

Last update: 2022-09-03
Started: 2022-05-24

stream: Introduction to the package

Rendered fromstream.Rnwusingutils::Sweaveon Dec 25 2024.

Last update: 2024-04-22
Started: 2015-12-06

Citation

Hahsler M (2024). stream: Infrastructure for Data Stream Mining. R package version 2.0-2.1, https://github.com/mhahsler/stream.

Hahsler M, Bolaños M, Forrest J (2017). “Introduction to stream: An Extensible Framework for Data Stream Clustering Research with R.” Journal of Statistical Software, 76(14), 1–50. doi:10.18637/jss.v076.i14.

Corresponding BibTeX entries:

  @Manual{,
    title = {stream: Infrastructure for Data Stream Mining},
    author = {Michael Hahsler},
    year = {2024},
    note = {R package version 2.0-2.1},
    url = {https://github.com/mhahsler/stream},
  }
  @Article{,
    title = {Introduction to {stream}: An Extensible Framework for Data
      Stream Clustering Research with {R}},
    author = {Michael Hahsler and Matthew Bola{\~n}os and John
      Forrest},
    journal = {Journal of Statistical Software},
    year = {2017},
    volume = {76},
    number = {14},
    pages = {1--50},
    doi = {10.18637/jss.v076.i14},
  }

Readme and manuals

Help Manual

Help pageTopics
Agreement-based Measures for Clusteringagreement
Animates Plots of the Clustering Processanimate_cluster
Animates the Plotting of a Data Streamsanimate animate_data animation
Close a Data Streamclose_stream
Data Stream Aggregator Base ClassesDSAggregate get_points.DSAggregate get_weights.DSAggregate update.DSAggregate
Sampling from a Data Stream (Data Stream Operator)DSAggregate_Sample
Sliding Window (Data Stream Operator)DSAggregate_Window
Data Stream Clustering Base ClassDSC get_centers get_copy get_macroclusters get_macroweights get_microclusters get_microweights get_weights nclusters
BICO - Fast computation of k-means coresets in a data streamBICO bico DSC_BICO
Balanced Iterative Reducing Clustering using HierarchiesBIRCH birch DSC_BIRCH
DBSCAN Macro-clustererDBSCAN dbscan DSC_DBSCAN
DBSTREAM Clustering Algorithmchange_alpha DBSTREAM dbstream DSC_DBSTREAM DSOutlier_DBSTREAM get_shared_density plot.DSC_DBSTREAM
D-Stream Data Stream Clustering AlgorithmD-Stream d-stream DSC_DStream DSOutlier_DStream dstream get_attraction plot.DSC_DStream
Reclustering using an Evolutionary AlgorithmDSC_EA
evoStream - Evolutionary Stream ClusteringDSC_evoStream
Hierarchical Micro-Cluster ReclustererDSC_Hierarchical
Kmeans Macro-clustererDSC_Kmeans
Abstract Class for Macro Clusterers (Offline Component)DSC_Macro microToMacro
Abstract Class for Micro Clusterers (Online Component)DSC_Micro
Abstract Class for Implementing R-based ClusterersDSC_R update.DSC_R
Reachability Micro-Cluster ReclustererDSC_Reachability
Extract a Fixed-size Sample from a Data StreamDSC_Sample
DSC_SlidingWindow - Data Stream Clusterer Using a Sliding WindowDSC_SlidingWindow
Create as Static Copy of a ClusteringDSC_Static
TwoStage Clustering ProcessDSC_TwoStage
A sliding window from a Data StreamDSC_Window
Abstract Class for Data Stream ClassifiersDSClassifier
DSClassifier_SlidingWindow - Data Stream Classifier Using a Sliding WindowDSClassifier_SlidingWindow
Data Stream Data Generator Base ClassesDSD DSD_R
Data Stream Generator for Bars and GaussiansDSD_BarsAndGaussians
Data Stream Generator for Dynamic Data Stream BenchmarksDSD_Benchmark
Static Cubes Data Stream GeneratorDSD_Cubes
Mixture of Gaussians Data Stream GeneratorDSD_Gaussians
A Data Stream Interface for Data Stored in MemoryDSD_Memory
DSD Moving Generatoradd_cluster add_cluster.DSD_MG DSD_MG get_clusters remove_cluster
Mixes Data Points from Several Streams into a Single StreamDSD_Mixture
Stream Interface for Data Sets From mlbenchDSD_mlbenchData
mlbench Data Stream GeneratorDSD_mlbenchGenerator
Placeholder for a DSD StreamDSD_NULL
Read a Data Stream from an open DB Queryclose_stream.DSD_ReadDB DSD_ReadDB
Read a Data Stream from a File or a Connectionclose_stream.DSD_ReadCSV close_stream.DSD_ReadStream DSD_ReadCSV DSD_ReadStream
Deprecated DSD_ScaleStreamDSD_ScaleStream
Target Data Stream GeneratorDSD_Target
Uniform Noise Data Stream GeneratorDSD_UniformNoise
Data Stream Filter Base Classesclose_stream.DSF DSF get_points.DSF reset_stream.DSF update.DSF
Apply a Filter to a Data StreamDSF_Convolve filter_diff filter_Hamming filter_MA filter_Sinc pow2
Downsample a Data StreamDSF_Downsample
Apply a dplyr Transformation to a Data StreamDSF_dplyr
Exponential Moving Average over a Data StreamDSF_ExponentialMA
Select Features for a Data StreamDSF_FeatureSelection
Apply a Function to Transformation to a Data StreamDSF_Func
Scale a Data StreamDSF_Scale
Abstract Class for Frequent Pattern Mining Algorithms for Data StreamsDSFP
Abstract Class for Data Stream Outlier DetectorsDSOutlier
Abstract Class for Data Stream RegressorsDSRegressor
DSRegressor_SlidingWindow - Data Stream Regressor Using a Sliding WindowDSRegressor_SlidingWindow
Conceptual Base Class for All Data Stream Mining Tasksdescription DST get_model
Apply Multiple Task to the Same Data StreamDST_Multi
DST_SlidingWindow - Call R Functions on a Sliding WindowDST_SlidingWindow predict.DST_SlidingWindow update.DST_SlidingWindow
Task to Write a Stream to a File or a Connectionclose_stream.DST_WriteStream DST_WriteStream
Evaluate a Data Stream Mining Taskevaluate evaluate_static evaluate_stream
Evaluate a Stream Clustering Taskevaluate.DSC evaluate_static.DSC evaluate_stream.DSC
Assignment Data Points to Clusters deprecatedget_assignment get_assignment.DSC
Get Points from a Data Stream Generatorget_points get_points.DSD remove_info
Moving Generator Clusteradd_keyframe get_keyframes keyframe MGC MGC_Function MGC_Linear MGC_Noise MGC_Random MGC_Static remove_keyframe Shape_Block Shape_Gaussian
Plot Results of a Data Stream Clusteringplot.DSC
Plot Data Stream Dataplot plot.DSD
Make a Prediction for a Data Stream Mining Taskpredict predict.DSC predict.DST
Prune Clusters from a Clusteringprune_clusters
Save and Read DSC ObjectsreadDSC read_saveDSC saveDSC
Re-clustering micro-clustersrecluster recluster.DSC_Macro
Reset a Data Stream to its Beginningreset_stream
Create a Data Stream PipelineDST_Runner stream_pipeline
Update a Data Stream Mining Task Model with Points from a Streamupdate update.DST
Write a Data Stream to a Filewrite_stream