Package: stream 2.0-2.1
stream: Infrastructure for Data Stream Mining
A framework for data stream modeling and associated data mining tasks such as clustering and classification. The development of this package was supported in part by NSF IIS-0948893, NSF CMMI 1728612, and NIH R21HG005912. Hahsler et al (2017) <doi:10.18637/jss.v076.i14>.
Authors:
stream_2.0-2.1.tar.gz
stream_2.0-2.1.zip(r-4.5)stream_2.0-2.1.zip(r-4.4)stream_2.0-2.1.zip(r-4.3)
stream_2.0-2.1.tgz(r-4.4-x86_64)stream_2.0-2.1.tgz(r-4.4-arm64)stream_2.0-2.1.tgz(r-4.3-x86_64)stream_2.0-2.1.tgz(r-4.3-arm64)
stream_2.0-2.1.tar.gz(r-4.5-noble)stream_2.0-2.1.tar.gz(r-4.4-noble)
stream_2.0-2.1.tgz(r-4.4-emscripten)stream_2.0-2.1.tgz(r-4.3-emscripten)
stream.pdf |stream.html✨
stream/json (API)
NEWS
# Install 'stream' in R: |
install.packages('stream', repos = c('https://mhahsler.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/mhahsler/stream/issues
On CRAN:stream-2.0-2(2024-04-21)
data-stream-clusteringdatastreamstream-miningcpp
Last updated 4 months agofrom:a42de98fdc. Checks:OK: 7 NOTE: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 25 2024 |
R-4.5-win-x86_64 | NOTE | Dec 25 2024 |
R-4.5-linux-x86_64 | NOTE | Dec 25 2024 |
R-4.4-win-x86_64 | OK | Dec 25 2024 |
R-4.4-mac-x86_64 | OK | Dec 25 2024 |
R-4.4-mac-aarch64 | OK | Dec 25 2024 |
R-4.3-win-x86_64 | OK | Dec 25 2024 |
R-4.3-mac-x86_64 | OK | Dec 25 2024 |
R-4.3-mac-aarch64 | OK | Dec 25 2024 |
Exports:%>%add_clusteradd_keyframeagreementanimate_clusteranimate_datachange_alphaclose_streamdescriptionDSAggregateDSAggregate_SampleDSAggregate_WindowDSCDSC_BICODSC_BIRCHDSC_DBSCANDSC_DBSTREAMDSC_DStreamDSC_EADSC_evoStreamDSC_HierarchicalDSC_KmeansDSC_MacroDSC_MicroDSC_RDSC_ReachabilityDSC_SampleDSC_SlidingWindowDSC_StaticDSC_TwoStageDSC_WindowDSClassifierDSClassifier_SlidingWindowDSDDSD_BarsAndGaussiansDSD_BenchmarkDSD_CubesDSD_GaussiansDSD_MemoryDSD_MGDSD_MixtureDSD_mlbenchDataDSD_mlbenchGeneratorDSD_NULLDSD_RDSD_ReadCSVDSD_ReadDBDSD_ReadStreamDSD_ScaleStreamDSD_TargetDSD_UniformNoiseDSFDSF_ConvolveDSF_DownsampleDSF_dplyrDSF_ExponentialMADSF_FeatureSelectionDSF_FuncDSF_ScaleDSFPDSOutlierDSOutlier_DBSTREAMDSOutlier_DStreamDSRegressorDSRegressor_SlidingWindowDSTDST_MultiDST_RunnerDST_SlidingWindowDST_WriteStreamevaluate_staticevaluate_streamfilter_difffilter_Hammingfilter_MAfilter_Sincget_assignmentget_attractionget_centersget_clustersget_copyget_keyframesget_macroclustersget_macroweightsget_microclustersget_microweightsget_modelget_pointsget_shared_densityget_weightskeyframeMGCMGC_FunctionMGC_LinearMGC_NoiseMGC_RandomMGC_StaticmicroToMacronclusterspow2prune_clustersreadDSCreclusterremove_clusterremove_inforemove_keyframereset_streamsaveDSCShape_BlockShape_Gaussianwrite_stream
Dependencies:BHclassclueclusterclusterGenerationdbscanDEoptimRdiptestflexmixfpcgenericskernlablatticemagrittrMASSmclustmlbenchmodeltoolsnnetprabclusproxyRcpprobustbaserpart
Citation
Hahsler M (2024). stream: Infrastructure for Data Stream Mining. R package version 2.0-2.1, https://github.com/mhahsler/stream.
Hahsler M, Bolaños M, Forrest J (2017). “Introduction to stream: An Extensible Framework for Data Stream Clustering Research with R.” Journal of Statistical Software, 76(14), 1–50. doi:10.18637/jss.v076.i14.
Corresponding BibTeX entries:
@Manual{, title = {stream: Infrastructure for Data Stream Mining}, author = {Michael Hahsler}, year = {2024}, note = {R package version 2.0-2.1}, url = {https://github.com/mhahsler/stream}, }
@Article{, title = {Introduction to {stream}: An Extensible Framework for Data Stream Clustering Research with {R}}, author = {Michael Hahsler and Matthew Bola{\~n}os and John Forrest}, journal = {Journal of Statistical Software}, year = {2017}, volume = {76}, number = {14}, pages = {1--50}, doi = {10.18637/jss.v076.i14}, }