Package: pomdp 1.2.3-1

pomdp: Infrastructure for Partially Observable Markov Decision Processes (POMDP)

Provides the infrastructure to define and analyze the solutions of Partially Observable Markov Decision Process (POMDP) models. Interfaces for various exact and approximate solution algorithms are available including value iteration, point-based value iteration and SARSOP. Smallwood and Sondik (1973) <doi:10.1287/opre.21.5.1071>.

Authors:Michael Hahsler [aut, cph, cre], Hossein Kamalzadeh [ctb]

pomdp_1.2.3-1.tar.gz
pomdp_1.2.3-1.zip(r-4.5)pomdp_1.2.3-1.zip(r-4.4)pomdp_1.2.3-1.zip(r-4.3)
pomdp_1.2.3-1.tgz(r-4.4-x86_64)pomdp_1.2.3-1.tgz(r-4.4-arm64)pomdp_1.2.3-1.tgz(r-4.3-x86_64)pomdp_1.2.3-1.tgz(r-4.3-arm64)
pomdp_1.2.3-1.tar.gz(r-4.5-noble)pomdp_1.2.3-1.tar.gz(r-4.4-noble)
pomdp_1.2.3-1.tgz(r-4.4-emscripten)pomdp_1.2.3-1.tgz(r-4.3-emscripten)
pomdp.pdf |pomdp.html
pomdp/json (API)
NEWS

# Install 'pomdp' in R:
install.packages('pomdp', repos = c('https://mhahsler.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/mhahsler/pomdp/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

control-theorymarkov-decision-processesoptimization

7.03 score 16 stars 21 scripts 814 downloads 70 exports 19 dependencies

Last updated 3 months agofrom:2e6c1ae286. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 27 2024
R-4.5-win-x86_64OKOct 27 2024
R-4.5-linux-x86_64OKOct 27 2024
R-4.4-win-x86_64OKOct 27 2024
R-4.4-mac-x86_64OKOct 27 2024
R-4.4-mac-aarch64OKOct 27 2024
R-4.3-win-x86_64OKOct 27 2024
R-4.3-mac-x86_64OKOct 27 2024
R-4.3-mac-aarch64OKOct 27 2024

Exports:absorbing_statesactionsadd_policycolors_continuouscolors_discretecurve_multiple_directedepoch_to_episodeestimate_belief_for_nodesgreedy_MDP_actiongreedy_MDP_policygridworld_animategridworld_initgridworld_matrixgridworld_maze_MDPgridworld_plot_policygridworld_plot_transition_graphgridworld_rc2sgridworld_s2rcis_converged_POMDPis_solved_MDPis_solved_POMDPis_timedependent_POMDPmake_fully_observablemake_partially_observablemanual_MDP_policyMDPMDP_policy_evaluationnormalize_MDPnormalize_POMDPO_observation_matrixobservation_valoptimal_actionplot_belief_spaceplot_policy_graphplot_transition_graphplot_value_functionpolicypolicy_graphPOMDPprojectionq_values_MDPR_random_MDP_policyreachable_statesread_POMDPregretremove_unreachable_statesrewardreward_matrixreward_node_actionreward_valround_stochasticsample_belief_spacesimulate_MDPsimulate_POMDPsolve_MDPsolve_MDP_DPsolve_MDP_TDsolve_POMDPsolve_POMDP_parametersolve_SARSOPstart_vectorT_transition_graphtransition_matrixtransition_valupdate_beliefvalue_functionwrite_POMDP

Dependencies:clicodetoolscpp11foreachglueigraphiteratorslatticelifecyclemagrittrMatrixpkgconfigpomdpSolveprocessxpsR6Rcpprlangvctrs

Gridworlds in Package pomdp

Rendered fromgridworlds.Rmdusingknitr::rmarkdownon Oct 27 2024.

Last update: 2024-02-22
Started: 2024-02-15

pomdp: Introduction to Partially Observable Markov Decision Processes

Rendered frompomdp.Rmdusingknitr::rmarkdownon Oct 27 2024.

Last update: 2024-04-22
Started: 2024-02-15

Readme and manuals

Help Manual

Help pageTopics
Access to Parts of the Model Descriptionaccessors normalize_MDP normalize_POMDP observation_matrix observation_val reward_matrix reward_val start_vector transition_matrix transition_val
Available Actionsactions
Add a Policy to a POMDP Problem Descriptionadd_policy
Cliff Walking Gridworld MDPCliff_walking cliff_walking
Default Colors for Visualization in Package pomdpcolors colors_continuous colors_discrete
The Dyna MazeDynaMaze dynamaze
Estimate the Belief for Policy Graph Nodesestimate_belief_for_nodes
Helper Functions for Gridworld MDPsgridworld gridworld_animate gridworld_init gridworld_matrix gridworld_maze_MDP gridworld_plot_policy gridworld_plot_transition_graph gridworld_rc2s gridworld_s2rc
Steward Russell's 4x3 Maze Gridworld MDPMaze maze
Define an MDP Problemis_solved_MDP MDP
Functions for MDP Policiesgreedy_MDP_action greedy_MDP_policy manual_MDP_policy MDP_policy_evaluation MDP_policy_functions q_values_MDP random_MDP_policy
Convert between MDPs and POMDPsmake_fully_observable make_partially_observable MDP2POMDP
Optimal action for a beliefoptimal_action
Plot a 2D or 3D Projection of the Belief Spaceplot_belief_space
POMDP Plot Policy Graphscurve_multiple_directed plot_policy_graph
Extract the Policy from a POMDP/MDPpolicy
POMDP Policy Graphspolicy_graph
Define a POMDP Problemepoch_to_episode is_converged_POMDP is_solved_POMDP is_timedependent_POMDP O_ POMDP R_ T_
POMDP Example FilesPOMDP_example_files
Defining a Belief Space Projectionprojection
Reachable and Absorbing Statesabsorbing_states reachable_and_absorbing reachable_states remove_unreachable_states
Calculate the Regret of a Policyregret
Calculate the Reward for a POMDP Solutionreward reward_node_action
Round a stochastic vector or a row-stochastic matrixround_stochastic
Russian Tiger Problem POMDP SpecificationRussianTiger
Sample from the Belief Spacesample_belief_space
Simulate Trajectories in a MDPsimulate_MDP
Simulate Trajectories Through a POMDPsimulate_POMDP
Solve an MDP Problemsolve_MDP solve_MDP_DP solve_MDP_TD
Solve a POMDP Problem using pomdp-solversolve_POMDP solve_POMDP_parameter
Solve a POMDP Problem using SARSOPsolve_SARSOP
Tiger Problem POMDP SpecificationThree_doors Tiger
Transition Graphplot_transition_graph transition_graph
Belief Updateupdate_belief
Value Functionplot_value_function value_function
Windy Gridworld MDPWindy_gridworld windy_gridworld
Read and write a POMDP Model to a File in POMDP Formatread_POMDP write_POMDP