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accessors Access to Parts of the Model Description

Description

Functions to provide uniform access to different parts of the MDP problem description.
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Usage

start_vector(x, start = NULL)

normalize_MDP(
x,
sparse = TRUE,
trans_start = FALSE,
trans_function = TRUE,
trans_keyword = FALSE

)

reward_matrix(
x,
action = NULL,
start.state = NULL,
end.state = NULL,
...,
sparse = FALSE

)

transition_matrix(
x,
action = NULL,
start.state = NULL,
end.state = NULL,
...,
sparse = FALSE,
trans_keyword = TRUE

)

Arguments

x A MDP object.

start a start state description (see MDP). If NULL then the start vector is created using
the start stored in the model.

sparse logical; use sparse matrices when the density is below 50% and keeps data.frame
representation for the reward field. NULL returns the representation stored in the
problem description which saves the time for conversion.

trans_start logical; expand the start to a probability vector?

trans_function logical; convert functions into matrices?

trans_keyword logical; convert distribution keywords (uniform and identity) in transition_prob
matrices?

action name or index of an action.
start.state, end.state

name or index of the state.

... further arguments are passed on.
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Details

Several parts of the MDP description can be defined in different ways. In particular, the fields
transition_prob, reward, and start can be defined using matrices, data frames, keywords, or
functions. See MDP for details. The functions provided here, provide unified access to the data in
these fields to make writing code easier.

Transition Probabilities T (s′|s, a):
transition_matrix() accesses the transition model. The complete model is a list with one
element for each action. Each element contains a states x states matrix with s (start.state) as
rows and s′ (end.state) as columns. Matrices with a density below 50% can be requested in
sparse format (as a Matrix::dgCMatrix).

Reward R(s, s′, a):
reward_matrix() accesses the reward model. The preferred representation is a data.frame with
the columns action, start.state, end.state, and value. This is a sparse representation.
The dense representation is a list of lists of matrices. The list levels are a (action) and s
(start.state). The matrices are column vectors with rows representing s′ (end.state). The
accessor converts the column vectors automatically into matrices with start states as rows and
end states as columns. This conversion can be suppressed by calling reward_matrix(...,
state_matrix = FALSE) Note that the reward structure cannot be efficiently stored using a stan-
dard sparse matrix since there might be a fixed cost for each action resulting in no entries with
0.

Start state:
start_vector() translates the start state description into a probability vector.

Convert the Complete MDP Description into a consistent form:
normalize_MDP() returns a new MDP definition where transition_prob, reward, and start
are normalized.
Also, states, and actions are ordered as given in the problem definition to make safe access
using numerical indices possible. Normalized MDP descriptions can be used in custom code that
expects consistently a certain format.

Value

A list or a list of lists of matrices.

Author(s)

Michael Hahsler

See Also

Other MDP: MDP(), actions(), add_policy(), gridworld, policy_evaluation(), q_values(),
reachable_and_absorbing, regret(), simulate_MDP(), solve_MDP(), transition_graph(),
value_function()
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Examples

data("Maze")
gridworld_matrix(Maze)

# List of |A| transition matrices. One per action in the from start.states x end.states
Maze$transition_prob
transition_matrix(Maze)
transition_matrix(Maze, action = "up", sparse = TRUE)
transition_matrix(Maze,

action = "up",
start.state = "s(3,1)", end.state = "s(2,1)"

)

# List of list of reward matrices. 1st level is action and second level is the
# start state in the form of a column vector with elements for end states.
Maze$reward
reward_matrix(Maze)
reward_matrix(Maze, sparse = TRUE)
reward_matrix(Maze,

action = "up",
start.state = "s(3,1)", end.state = "s(2,1)"

)

# Translate the initial start probability vector
Maze$start
start_vector(Maze)

# Normalize the whole model using dense representation
Maze_norm <- normalize_MDP(Maze, sparse = FALSE)
Maze_norm$transition_prob

action Action Given a Policy

Description

Returns an action given a policy. If the policy is optimal, then also the action will be optimal.

Usage

action(model, ...)

## S3 method for class 'MDP'
action(model, state, epsilon = 0, epoch = 1, ...)

Arguments

model a solved MDP.

... further parameters are passed on.
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state the state.

epsilon make the policy epsilon soft.

epoch what epoch of the policy should be used. Use 1 for converged policies.

Value

The name of the optimal action as a factor.

Author(s)

Michael Hahsler

See Also

Other policy: policy(), policy_evaluation(), q_values(), reward(), value_function()

Examples

data("Maze")
Maze

sol <- solve_MDP(Maze)
policy(sol)

action(sol, state = "s(1,3)")

## choose from an epsilon-soft policy
table(replicate(100, action(sol, state = "s(1,3)", epsilon = 0.1)))

actions Available Actions in a State

Description

Determine the set of actions available in a state.

Usage

actions(x, state)

Arguments

x a MDP object.

state a character vector of length one specifying the state.

Details

Unavailable actions are modeled here a actions that have an immediate reward of -Inf in the reward
function.
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Value

a character vector with the available actions.

a vector with the available actions.

Author(s)

Michael Hahsler

See Also

Other MDP: MDP(), accessors, add_policy(), gridworld, policy_evaluation(), q_values(),
reachable_and_absorbing, regret(), simulate_MDP(), solve_MDP(), transition_graph(),
value_function()

Examples

data(Maze)
gridworld_matrix(Maze)

# The the following actions are always available:
Maze$actions

# available actions in
actions(Maze, state = "s(3,1)")

add_policy Add a Policy to a MDP Problem Description

Description

Add a policy to a MDP problem description allows the user to test policies on modified problem
descriptions or to test manually created policies.

Usage

add_policy(model, policy)

Arguments

model a MDP model description.

policy a policy data.frame.
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Details

The new policy needs to be a data.frame with one row for each state in the order the states are
defined in the model. The only required column is

• action: the action prescribed in the state corresponding to the row.

Optional columns are

• state: the state names in the order of the states in the model. The needed names can be
obtained by from the $states element of the model.

• U: with the utility given by the value function for the state.

Value

The model description with the added policy.

Author(s)

Michael Hahsler

See Also

Other POMDP: reachable_and_absorbing

Other MDP: MDP(), accessors, actions(), gridworld, policy_evaluation(), q_values(),
reachable_and_absorbing, regret(), simulate_MDP(), solve_MDP(), transition_graph(),
value_function()

Examples

data(Maze)

sol <- solve_MDP(Maze)
sol

policy(sol)
reward(sol)

# Add a random policy
random_pol <- random_policy(Maze)
random_pol
sol_random <- add_policy(Maze, random_pol)
policy(sol_random)
reward(sol_random)
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Cliff_walking Cliff Walking Gridworld MDP

Description

The cliff walking gridworld MDP example from Chapter 6 of the textbook "Reinforcement Learn-
ing: An Introduction."

Format

An object of class MDP.

Details

The cliff walking gridworld has the following layout:

The gridworld is represented as a 4 x 12 matrix of states. The states are labeled with their x and y
coordinates. The start state is in the bottom left corner. Each action has a reward of -1, falling off
the cliff has a reward of -100 and returns the agent back to the start. The episode is finished once
the agent reaches the absorbing goal state in the bottom right corner. No discounting is used (i.e.,
γ = 1).

References

Richard S. Sutton and Andrew G. Barto (2018). Reinforcement Learning: An Introduction Second
Edition, MIT Press, Cambridge, MA.

See Also

Other MDP_examples: DynaMaze, MDP(), Maze, Windy_gridworld

Other gridworld: DynaMaze, Maze, Windy_gridworld, gridworld
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Examples

data(Cliff_walking)
Cliff_walking

gridworld_matrix(Cliff_walking)
gridworld_matrix(Cliff_walking, what = "labels")

# The Goal is an absorbing state
which(absorbing_states(Cliff_walking))

# visualize the transition graph
gridworld_plot_transition_graph(Cliff_walking)

# solve using different methods
sol <- solve_MDP(Cliff_walking)
sol
policy(sol)
gridworld_plot(sol)

sol <- solve_MDP(Cliff_walking, method = "q_learning", N = 100)
sol
policy(sol)
gridworld_plot(sol)

sol <- solve_MDP(Cliff_walking, method = "sarsa", N = 100)
sol
policy(sol)
gridworld_plot(sol)

sol <- solve_MDP(Cliff_walking, method = "expected_sarsa", N = 100, alpha = 1)
policy(sol)
gridworld_plot(sol)

colors Default Colors for Visualization

Description

Default discrete and continuous colors used in the package markovDP.

Usage

colors_discrete(n, col = NULL)

colors_continuous(val, col = NULL)
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Arguments

n number of states.

col custom color palette. colors_discrete() uses the first n colors. colors_continuous()
uses the given colors to calculate a palette (see grDevices::colorRamp()). The
default is a blue-red color ramp.

val a vector with values to be translated to colors.

Value

colors_discrete() returns a color palette and colors_continuous() returns the colors associ-
ated with the supplied values.

Examples

colors_discrete(5)

colors_continuous(runif(10))

DynaMaze The Dyna Maze

Description

The Dyna Maze from Chapter 8 of the textbook "Reinforcement Learning: An Introduction."

Format

An object of class MDP.

Details

The simple 6x9 maze with a few walls.

References

Richard S. Sutton and Andrew G. Barto (2018). Reinforcement Learning: An Introduction Second
Edition, MIT Press, Cambridge, MA.

See Also

Other MDP_examples: Cliff_walking, MDP(), Maze, Windy_gridworld

Other gridworld: Cliff_walking, Maze, Windy_gridworld, gridworld

Other MDP_examples: Cliff_walking, MDP(), Maze, Windy_gridworld

Other gridworld: Cliff_walking, Maze, Windy_gridworld, gridworld



12 gridworld

Examples

data(DynaMaze)

DynaMaze

gridworld_matrix(DynaMaze)
gridworld_matrix(DynaMaze, what = "labels")

gridworld_plot_transition_graph(DynaMaze)

gridworld Helper Functions for Gridworld MDPs

Description

Helper functions for gridworld MDPs to convert between state names and gridworld positions, and
for visualizing policies.

Usage

gridworld_init(
dim,
action_labels = c("up", "right", "down", "left"),
unreachable_states = NULL,
absorbing_states = NULL,
labels = NULL

)

gridworld_maze_MDP(
dim,
start,
goal,
walls = NULL,
action_labels = c("up", "right", "down", "left"),
goal_reward = 1,
step_cost = 0,
restart = FALSE,
discount = 0.9,
horizon = Inf,
info = NULL,
name = NA

)

gridworld_s2rc(s)

gridworld_rc2s(rc)
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gridworld_matrix(model, epoch = 1L, what = "states")

gridworld_plot(
model,
epoch = 1L,
actions = "character",
states = FALSE,
labels = TRUE,
impossible_actions = FALSE,
main = NULL,
cex = 1,
offset = 0.5,
lines = TRUE,
col = hcl.colors(12, "YlOrRd", rev = TRUE),
unreachable_col = "black",
...

)

gridworld_plot_transition_graph(
x,
hide_unreachable_states = TRUE,
remove.loops = TRUE,
vertex.color = "gray",
vertex.shape = "square",
vertex.size = 10,
vertex.label = NA,
edge.arrow.size = 0.3,
margin = 0.2,
main = NULL,
...

)

gridworld_animate(x, method, n, zlim = NULL, ...)

gridworld_read_maze(file, discount = 1, restart = FALSE, name = "Maze")

Arguments

dim vector of length two with the x and y extent of the gridworld.

action_labels vector with four action labels that move the agent up, right, down, and left.
unreachable_states

a vector with state labels for unreachable states. These states will be excluded.
absorbing_states

a vector with state labels for absorbing states.

labels logical; show state labels.

start, goal labels for the start state and the goal state.

walls a vector with state labels for walls. Walls will become unreachable states.
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goal_reward reward to transition to the goal state.

step_cost cost of each action that does not lead to the goal state.

restart logical; if TRUE then the problem automatically restarts when the agent reaches
the goal state.

discount, horizon
MDP discount factor, and horizon.

info A list with additional information. Has to contain the gridworld dimensions as
element gridworld_dim.

name a string to identify the MDP problem.

s a state label.

rc a vector of length two with the row and column coordinate of a state in the
gridworld matrix.

model, x a solved gridworld MDP.

epoch epoch for unconverged finite-horizon solutions.

what What should be returned in the matrix. Options are: "states", "labels",
"values", "actions", "absorbing", and "reachable".

actions how to show actions. Options are: simple "character", "unicode" arrows
(needs to be supported by the used font), "label" of the action, and "none" to
suppress showing the action.

states logical; show state names.
impossible_actions

logical; show the value and the action for absorbing or unreachable states.

main a main title for the plot. Defaults to the name of the problem.

cex expansion factor for the action.

offset move the state labels out of the way (in fractions of a character width).

lines logical; draw lines to separate states.

col a colors for the utility values.
unreachable_col

a color used for unreachable states. Use NA for no color.

... further arguments are passed on to igraph::plot.igraph().
hide_unreachable_states

logical; do not show unreachable states.

remove.loops logical; do not show transitions from a state back to itself.
vertex.color, vertex.shape, vertex.size, vertex.label, edge.arrow.size

see igraph::igraph.plotting for details. Set vertex.label = NULL to show
the state labels on the graph.

margin a single number specifying the margin of the plot. Can be used if the graph does
not fit inside the plotting area.

method a MDP solution method for solve_MDP().

n number of iterations to animate.

zlim limits for visualizing the state value.

file filename for a maze text file.
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Details

Gridworlds are implemented with state names s(row,col), where row and col are locations in the
matrix representing the gridworld. The actions are "up", "right", "down", and "left".

gridworld_init() initializes a new gridworld creating a matrix of states with the given dimen-
sions. Other action names can be specified, but they must have the same effects in the same order
as above. Unreachable states (walls) and absorbing state can be defined. This information can be
used to build a custom gridworld MDP.

Several helper functions are provided to use states, look at the state layout, and plot policies on the
gridworld.

gridworld_maze_MDP() helps to easily define maze-like gridworld MDPs. By default, the goal
state is absorbing, but with restart = TRUE, the agent restarts the problem at the start state every
time it reaches the goal and receives the reward. Note that this implies that the goal state itself
becomes unreachable.

gridworld_animate() applies algorithms from solve_MDP() iteration by iteration and visualized
the state utilities. This helps to understand how the algorithms work.

See Also

Other gridworld: Cliff_walking, DynaMaze, Maze, Windy_gridworld

Other MDP: MDP(), accessors, actions(), add_policy(), policy_evaluation(), q_values(),
reachable_and_absorbing, regret(), simulate_MDP(), solve_MDP(), transition_graph(),
value_function()

Examples

# Defines states, actions and a transition model for a standard gridworld
gw <- gridworld_init(

dim = c(7, 7),
unreachable_states = c("s(2,2)", "s(7,3)", "s(3,6)"),
absorbing_states = "s(4,4)",
labels = list("s(4,4)" = "Black Hole")

)

gw$states
gw$actions
gw$info

# display the state labels in the gridworld
gridworld_matrix(gw)
gridworld_matrix(gw, what = "label")
gridworld_matrix(gw, what = "reachable")
gridworld_matrix(gw, what = "absorbing")

# a transition function for regular moves in the gridworld is provided
gw$transition_prob("right", "s(1,1)", "s(1,2)")
gw$transition_prob("right", "s(2,1)", "s(2,2)") ### we cannot move into an unreachable state
gw$transition_prob("right", "s(2,1)", "s(2,1)") ### but the agent stays in place

# convert between state names and row/column indices
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gridworld_s2rc("s(1,1)")
gridworld_rc2s(c(1, 1))

# The information in gw can be used to build a custom MDP.

# We modify the standard transition function so there is a 50% chance that
# you will get sucked into the black hole from the adjacent squares.
trans_black_hole <- function(action = NA, start.state = NA, end.state = NA) {

# ignore the action next to the black hole
if (start.state %in% c(
"s(3,3)", "s(3,4)", "s(3,5)", "s(4,3)", "s(4,5)",
"s(5,3)", "s(5,4)", "s(5,5)"

)) {
if (end.state == "s(4,4)") {

return(.5)
} else {

return(gw$transition_prob(action, start.state, end.state) * .5)
}

}

# use the standard gridworld movement
gw$transition_prob(action, start.state, end.state)

}

black_hole <- MDP(
states = gw$states,
actions = gw$actions,
transition_prob = trans_black_hole,
reward = rbind(R_(value = +1), R_(end.state = "s(4,4)", value = -100)),
info = gw$info,
name = "Black hole"

)

black_hole

gridworld_plot_transition_graph(black_hole)

# solve the problem
sol <- solve_MDP(black_hole)
gridworld_matrix(sol, what = "values")
gridworld_plot(sol)
# the optimal policy is to fly around, but avoid the black hole.

# Build a Maze: The Dyna Maze from Chapter 8 in the RL book

DynaMaze <- gridworld_maze_MDP(
dim = c(6, 9),
start = "s(3,1)",
goal = "s(1,9)",
walls = c(

"s(2,3)", "s(3,3)", "s(4,3)",
"s(5,6)",
"s(1,8)", "s(2,8)", "s(3,8)"
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),
restart = TRUE,
discount = 0.95,
name = "Dyna Maze",

)
DynaMaze

gridworld_matrix(DynaMaze)
gridworld_matrix(DynaMaze, what = "labels")

gridworld_plot_transition_graph(DynaMaze)
# Note that the problems resets if the goal state would be reached.

sol <- solve_MDP(DynaMaze)

gridworld_matrix(sol, what = "values")
gridworld_matrix(sol, what = "actions")
gridworld_plot(sol)
gridworld_plot(sol, states = TRUE)

# visualize the first 3 iterations of value iteration
gridworld_animate(DynaMaze, method = "value", n = 3)

# Read a maze from a text file
# (X are walls, S is the start and G is the goal)

# some examples are installed with pom
maze_dir <- system.file("mazes", package = "markovDP")
dir(maze_dir)

file.show(file.path(maze_dir, "small_maze.txt"))

maze <- gridworld_read_maze(file.path(maze_dir, "small_maze.txt"))
maze
gridworld_plot(maze)
sol <- solve_MDP(maze, method = "lp", discount = 0.999)
sol

gridworld_plot(sol)

Maze Steward Russell’s 4x3 Maze Gridworld MDP

Description

The 4x3 maze is described in Chapter 17 of the textbook "Artificial Intelligence: A Modern Ap-
proach" (AIMA).

Format

An object of class MDP.
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Details

The simple maze has the following layout:

1234 Transition model:
###### .8 (action direction)
1# +# ^
2# # -# |
3#S # .1 <-|-> .1
######

We represent the maze states as a gridworld matrix with 3 rows and 4 columns. The states are
labeled s(row, col) representing the position in the matrix. The # (state s(2,2)) in the middle of
the maze is an obstruction and not reachable. Rewards are associated with transitions. The default
reward (penalty) is -0.04. The start state marked with S is s(3,1). Transitioning to + (state s(1,4))
gives a reward of +1.0, transitioning to - (state s_(2,4)) has a reward of -1.0. Both these states are
absorbing (i.e., terminal) states.

Actions are movements (up, right, down, left). The actions are unreliable with a .8 chance to
move in the correct direction and a 0.1 chance to instead to move in a perpendicular direction
leading to a stochastic transition model.

Note that the problem has reachable terminal states which leads to a proper policy (that is guar-
anteed to reach a terminal state). This means that the solution also converges without discounting
(discount = 1).

References

Russell,9 S. J. and Norvig, P. (2020). Artificial Intelligence: A modern approach. 4rd ed.

See Also

Other MDP_examples: Cliff_walking, DynaMaze, MDP(), Windy_gridworld

Other gridworld: Cliff_walking, DynaMaze, Windy_gridworld, gridworld

Examples

# The problem can be loaded using data(Maze).

# Here is the complete problem definition:
gw <- gridworld_init(dim = c(3, 4), unreachable_states = c("s(2,2)"))
gridworld_matrix(gw)

# the transition function is stochastic so we cannot use the standard
# gridworld gw$transition_prob() function and have to replace it
T <- function(action, start.state, end.state) {

actions <- c("up", "right", "down", "left")
states <- c(
"s(1,1)", "s(2,1)", "s(3,1)", "s(1,2)", "s(3,2)", "s(1,3)",
"s(2,3)", "s(3,3)", "s(1,4)", "s(2,4)", "s(3,4)"

)
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action <- match.arg(action, choices = actions)

# absorbing states
if (start.state %in% c("s(1,4)", "s(2,4)")) {

if (start.state == end.state) {
return(1)

} else {
return(0)

}
}

if (action %in% c("up", "down")) {
error_direction <- c("right", "left")

} else {
error_direction <- c("up", "down")

}

rc <- gridworld_s2rc(start.state)
delta <- list(

up = c(-1, 0),
down = c(+1, 0),
right = c(0, +1),
left = c(0, -1)

)
P <- matrix(0, nrow = 3, ncol = 4)

add_prob <- function(P, rc, a, value) {
new_rc <- rc + delta[[a]]
if (!(gridworld_rc2s(new_rc) %in% states)) {

new_rc <- rc
}
P[new_rc[1], new_rc[2]] <- P[new_rc[1], new_rc[2]] + value
P

}

P <- add_prob(P, rc, action, .8)
P <- add_prob(P, rc, error_direction[1], .1)
P <- add_prob(P, rc, error_direction[2], .1)
P[rbind(gridworld_s2rc(end.state))]

}

T("up", "s(3,1)", "s(2,1)")

R <- rbind(
R_(end.state = NA, value = -0.04),
R_(end.state = "s(2,4)", value = -1),
R_(end.state = "s(1,4)", value = +1),
R_(start.state = "s(2,4)", value = 0),
R_(start.state = "s(1,4)", value = 0)

)

Maze <- MDP(
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name = "Stuart Russell's 3x4 Maze",
discount = 1,
horizon = Inf,
states = gw$states,
actions = gw$actions,
start = "s(3,1)",
transition_prob = T,
reward = R,
info = list(
gridworld_dim = c(3, 4),
gridworld_labels = list(

"s(3,1)" = "Start",
"s(2,4)" = "-1",
"s(1,4)" = "Goal: +1"

)
)

)

Maze

str(Maze)

gridworld_matrix(Maze)
gridworld_matrix(Maze, what = "labels")
gridworld_plot(Maze)

# find absorbing (terminal) states
which(absorbing_states(Maze))

maze_solved <- solve_MDP(Maze)
policy(maze_solved)

gridworld_matrix(maze_solved, what = "values")
gridworld_matrix(maze_solved, what = "actions")

gridworld_plot(maze_solved)

MDP Define an MDP Problem

Description

Defines all the elements of a discrete-time finite state-space MDP problem.

Usage

MDP(
states,
actions,
transition_prob,
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reward,
discount = 0.9,
horizon = Inf,
start = "uniform",
info = NULL,
name = NA,
normalize = TRUE

)

is_solved_MDP(x, stop = FALSE)

epoch_to_episode(x, epoch)

T_(action = NA, start.state = NA, end.state = NA, probability)

R_(action = NA, start.state = NA, end.state = NA, observation = NA, value)

Arguments

states a character vector specifying the names of the states.

actions a character vector specifying the names of the available actions.

transition_prob

Specifies the transition probabilities between states.

reward Specifies the rewards dependent on action and states.

discount numeric; discount rate between 0 and 1.

horizon numeric; Number of epochs. Inf specifies an infinite horizon.

start Specifies in which state the MDP starts.

info A list with additional information.

name a string to identify the MDP problem.

normalize logical; normalize representation (see normalize_MDP()).

x a MDP object.

stop logical; stop with an error.

epoch integer; an epoch that should be converted to the corresponding episode in a
time-dependent MDP.

action action as a action label or integer. The value NA matches any action.

start.state, end.state
state as a state label or an integer. The value NA matches any state.

probability, value
Values used in the helper functions T_() and R_().

observation unused for MDPs. Must be NA.



22 MDP

Details

Markov decision processes (MDPs) are discrete-time stochastic control process. We implement
here MDPs with a finite state space. MDP() defines all the element of a MDP problem including
the discount rate, the set of states, the set of actions,the transition probabilities, the observation
probabilities, and the rewards.

In the following we use the following notation. The MDP is a 5-duple:

(S,A, T,R, γ).

S is the set of states; A is the set of actions; T are the conditional transition probabilities between
states; R is the reward function; Ω is the set of observations; and γ is the discount factor. We will
use lower case letters to represent a member of a set, e.g., s is a specific state. To refer to the size of
a set we will use cardinality, e.g., the number of actions is |A|.
Names used for mathematical symbols in code

• S, s, s′: 'states', start.state', 'end.state'

• A, a: 'actions', 'action'

State names and actions can be specified as strings or index numbers (e.g., start.state can be
specified as the index of the state in states). For the specification as data.frames below, NA can be
used to mean any start.state, end.state or action.

Specification of transition probabilities: T (s′|s, a)
Transition probability to transition to state s′ from given state s and action a. The transition proba-
bilities can be specified in the following ways:

• A data.frame with columns exactly like the arguments of T_(). You can use rbind() with
helper function T_() to create this data frame. Probabilities can be specified multiple times
and the definition that appears last in the data.frame will take affect.

• A named list of matrices, one for each action. Each matrix is square with rows representing
start states s and columns representing end states s′. Instead of a matrix, also the strings
'identity' or 'uniform' can be specified.

• A function with the same arguments are T_(), but no default values that returns the transition
probability.

Specification of the reward function: R(a, s, s′)

The reward function can be specified in the following ways:

• A data frame with columns named exactly like the arguments of R_(). You can use rbind()
with helper function R_() to create this data frame. Rewards can be specified multiple times
and the definition that appears last in the data.frame will take affect.

• A list of state x state matrices. The list elements are for 'action'. The matrix rows are
start.state and the columns are end.state.

• A function with the same arguments are R_(), but no default values that returns the reward.

To avoid overflow problems with rewards, reward values should stay well within the range of
[-1e10, +1e10]. -Inf can be used as the reward for unavailable actions and will be translated
into a large negative reward for solvers that only support finite reward values.
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Note: The code also includes in R_() an argument called observation. Observations are only used
POMDPs implemented in package pomdp abs must always be NA for MDPs.

Start State
The start state of the agent can be a single state or a distribution over the states. The start state
definition is used as the default when the reward is calculated by reward() and for simulations
with simulate_MDP().

Options to specify the start state are:

• A string specifying the name of a single starting state.

• An integer in the range 1 to n to specify the index of a single starting state.

• The string "uniform" where the start state is chosen using a uniform distribution over all
states.

• A probability distribution over the states. That is, a vector of |S| probabilities, that add up to
1.

The default state state is a uniform distribution over all states.

Value

The function returns an object of class MDP which is list with the model specification. solve_MDP()
reads the object and adds a list element called 'solution'.

Author(s)

Michael Hahsler

See Also

Other MDP: accessors, actions(), add_policy(), gridworld, policy_evaluation(), q_values(),
reachable_and_absorbing, regret(), simulate_MDP(), solve_MDP(), transition_graph(),
value_function()

Other MDP_examples: Cliff_walking, DynaMaze, Maze, Windy_gridworld

Examples

# simple MDP example
#
# states: s1 s2 s3 s4
# transitions: forward moves -> and backward moves <-
# start: s1
# reward: s1, s2, s4 = 0 and s3 = 1

car <- MDP(
states = c("s1", "s2", "s3", "s4"),
actions = c("forward", "back", "stop"),
transition <- list(
forward = rbind(c(0, 1, 0, 0), c(0, 0, 1, 0), c(0, 0, 0, 1), c(0, 0, 0, 1)),
back = rbind(c(1, 0, 0, 0), c(1, 0, 0, 0), c(0, 1, 0, 0), c(0, 0, 1, 0)),
stop = "identity"
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),
reward = rbind(

R_(value = 0),
R_(end.state = "s3", value = 1)

),
discount = 0.9,
start = "s1",
name = "Simple Car MDP"

)

car

transition_matrix(car)
reward_matrix(car, sparse = TRUE)
reward_matrix(car)

sol <- solve_MDP(car)
policy(sol)

policy Extract or Create a Policy

Description

Extracts the policy from a solved model or create a policy. All policies are deterministic.

Usage

policy(x, epoch = NULL, drop = TRUE)

random_policy(x, prob = NULL)

manual_policy(x, actions)

Arguments

x A solved MDP object.

epoch return the policy of the given epoch. NULL returns a list with elements for each
epoch.

drop logical; drop the list for converged, epoch-independent policies.

prob probability vector for random actions for random_policy(). a logical indicat-
ing if action probabilities should be returned for greedy_action().

actions a vector with the action (either the action label or the numeric id) for each state.
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Details

For an MDP, the deterministic policy is a data.frame with columns for:

• state: The state.

• U: The state’s value (discounted expected utility U) if the policy is followed.

• action: The prescribed action.

For unconverged, finite-horizon problems, the solution is a policy for each epoch. This is returned
as a list of data.frames.

Value

A data.frame containing the policy. If drop = FALSE then the policy is returned as a list with the
policy for each epoch.

Author(s)

Michael Hahsler

See Also

Other policy: action(), policy_evaluation(), q_values(), reward(), value_function()

Examples

data("Maze")

sol <- solve_MDP(Maze)
sol

## policy with value function and optimal action.
policy(sol)
plot_value_function(sol)
gridworld_plot(sol)

## create a random policy
pi_random <- random_policy(Maze)
pi_random

gridworld_plot(add_policy(Maze, pi_random))

## create a manual policy (go up and in some squares to the right)
acts <- rep("up", times = length(Maze$states))
names(acts) <- Maze$states
acts[c("s(1,1)", "s(1,2)", "s(1,3)")] <- "right"
pi_manual <- manual_policy(Maze, acts)
pi_manual

gridworld_plot(add_policy(Maze, pi_manual))

## Finite horizon (we use incremental pruning because grid does not converge)
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sol <- solve_MDP(model = Maze, horizon = 3)
sol

policy(sol)
gridworld_plot(sol)

policy_evaluation Policy Evaluation

Description

Evaluate a policy for a model by repeatedly applying the Bellman operator.

Usage

policy_evaluation(
model,
pi,
U = NULL,
k_backups = 1000,
theta = 0.001,
verbose = FALSE

)

bellman_operator(model, pi, U)

Arguments

model an MDP problem specification.

pi a policy as a data.frame with at least columns for states and action.

U a vector with value function representing the state utilities (expected sum of
discounted rewards from that point on). If model is a solved model, then the
state utilities are taken from the solution.

k_backups number of look ahead steps used for approximate policy evaluation used by the
policy iteration method. Set k_backups to Inf to only use θ as the stopping
criterion.

theta stop when the largest change in a state value is less than θ.

verbose logical; should progress and approximation errors be printed.

Details

The Bellman operator updates a value function given the model defining T , γ and R, and a policy
π by applying the Bellman equation as an update rule for each state:

Uk+1(s) =
∑
a

πa|s
∑
s′

T (s′|s, a)[R(s, a) + γUk(s
′)]
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A policy can be evaluated by applying the Bellman update till convergence. In each iteration, all
states are updated. In this implementation updating is stopped afterk_backups iterations or after
the largest update

||Uk+1 − Uk||∞ < θ.

Value

a vector with (approximate) state values (U).

Author(s)

Michael Hahsler

References

Sutton, R. S., Barto, A. G. (2020). Reinforcement Learning: An Introduction. Second edition. The
MIT Press.

See Also

Other MDP: MDP(), accessors, actions(), add_policy(), gridworld, q_values(), reachable_and_absorbing,
regret(), simulate_MDP(), solve_MDP(), transition_graph(), value_function()

Other policy: action(), policy(), q_values(), reward(), value_function()

Examples

data(Maze)
Maze

# create several policies:
# 1. optimal policy using value iteration
maze_solved <- solve_MDP(Maze, method = "value_iteration")
pi_opt <- policy(maze_solved)
pi_opt

# 2. a manual policy (go up and in some squares to the right)
acts <- rep("up", times = length(Maze$states))
names(acts) <- Maze$states
acts[c("s(1,1)", "s(1,2)", "s(1,3)")] <- "right"
pi_manual <- manual_policy(Maze, acts)
pi_manual

# 3. a random policy
set.seed(1234)
pi_random <- random_policy(Maze)
pi_random

# 4. an improved policy based on one policy evaluation and
# policy improvement step.
u <- policy_evaluation(Maze, pi_random)
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q <- q_values(Maze, U = u)
pi_greedy <- greedy_policy(q)
pi_greedy

#' compare the approx. value functions for the policies (we restrict
#' the number of backups for the random policy since it may not converge)
rbind(

random = policy_evaluation(Maze, pi_random, k_backups = 100),
manual = policy_evaluation(Maze, pi_manual),
greedy = policy_evaluation(Maze, pi_greedy),
optimal = policy_evaluation(Maze, pi_opt)

)

q_values Q-Value Functions

Description

Implementation several functions useful to deal with Q-values for MDPs.

Usage

q_values(model, U = NULL)

greedy_action(Q, s, epsilon = 0, prob = FALSE)

greedy_policy(Q)

Arguments

model an MDP problem specification.

U a vector with value function representing the state utilities (expected sum of
discounted rewards from that point on). If model is a solved model, then the
state utilities are taken from the solution.

Q an action value function with Q-values as a state by action matrix.

s a state.

epsilon an epsilon > 0 applies an epsilon-greedy policy.

prob logical; return a probability distribution over the actions.

Details

Implemented functions are:

• q_values() calculates (approximates) Q-values for a given model and value function using
the Bellman optimality equation:

q(s, a) =
∑
s′

T (s′|s, a)[R(s, a) + γU(s′)]
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Q-values are calculated if U = U∗, the optimal value function otherwise we get an approxi-
mation. Q-values can be used as the input for several other functions.

• greedy_action() returns the action with the largest Q-value given a state.

• greedy_policy() generates a greedy policy using Q-values.

Value

q_values() returns a state by action matrix specifying the Q-function, i.e., the action value for
executing each action in each state. The Q-values are calculated from the value function (U) and
the transition model.

greedy_action() returns the action with the highest q-value for state s. If prob = TRUE, then a
vector with the probability for each action is returned.

greedy_policy() returns the greedy policy given Q.

Author(s)

Michael Hahsler

References

Sutton, R. S., Barto, A. G. (2020). Reinforcement Learning: An Introduction. Second edition. The
MIT Press.

See Also

Other MDP: MDP(), accessors, actions(), add_policy(), gridworld, policy_evaluation(),
reachable_and_absorbing, regret(), simulate_MDP(), solve_MDP(), transition_graph(),
value_function()

Other policy: action(), policy(), policy_evaluation(), reward(), value_function()

Examples

data(Maze)
Maze

# create a random policy and calculate q-values
pi_random <- random_policy(Maze)
u <- policy_evaluation(Maze, pi_random)
q <- q_values(Maze, U = u)

# get the greedy policy form the q-values
pi_greedy <- greedy_policy(q)
pi_greedy
gridworld_plot(add_policy(Maze, pi_greedy), main = "Maze: Greedy Policy")

greedy_action(q, "s(3,1)", epsilon = 0, prob = FALSE)
greedy_action(q, "s(3,1)", epsilon = 0, prob = TRUE)
greedy_action(q, "s(3,1)", epsilon = .1, prob = TRUE)
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reachable_and_absorbing

Reachable and Absorbing States

Description

Find reachable and absorbing states in the transition model.

Usage

reachable_states(x, states = NULL, ...)

absorbing_states(x, states = NULL, ...)

remove_unreachable_states(x)

Arguments

x a MDP object.
states a character vector specifying the names of the states to be checked. NULL checks

all states.
... further arguments are passed on.

Details

The function reachable_states() checks if states are reachable using the transition model and
the start probabilities.

The function absorbing_states() checks if a state or a set of states are absorbing (terminal states)
with a zero reward (or -Inf for unavailable actions). If no states are specified (states = NULL), then
all model states are checked. This information can be used in simulations to end an episode.

The function remove_unreachable_states() simplifies a model by removing unreachable states.

Value

reachable_states() returns a logical vector indicating if the states are reachable.

absorbing_states() returns a logical vector indicating if the states are absorbing (terminal).

the model with all unreachable states removed

Author(s)

Michael Hahsler

See Also

Other MDP: MDP(), accessors, actions(), add_policy(), gridworld, policy_evaluation(),
q_values(), regret(), simulate_MDP(), solve_MDP(), transition_graph(), value_function()

Other POMDP: add_policy()
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Examples

data(Maze)

gridworld_matrix(Maze)
gridworld_matrix(Maze, what = "labels")

# -1 and +1 are absorbing states
absorbing_states(Maze)
which(absorbing_states(Maze))

# all states in the model are reachable
reachable_states(Maze)
which(!reachable_states(Maze))

regret Calculate the Regret of a Policy

Description

Calculates the regret of a policy relative to a benchmark policy.

Usage

regret(policy, benchmark, start = NULL)

Arguments

policy a solved POMDP containing the policy to calculate the regret for.

benchmark a solved POMDP with the (optimal) policy. Regret is calculated relative to this
policy.

start start state distribution. If NULL then the start state of the benchmark is used.

Details

Regret is defined as V π∗
(s0) − V π(s0) with V π representing the expected long-term state value

(represented by the value function) given the policy π and the start state s0.

Note that for regret usually the optimal policy π∗ is used as the benchmark. Since the optimal policy
may not be known, regret relative to the best known policy can be used.

Value

the regret as a difference of expected long-term rewards.

Author(s)

Michael Hahsler
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See Also

Other MDP: MDP(), accessors, actions(), add_policy(), gridworld, policy_evaluation(),
q_values(), reachable_and_absorbing, simulate_MDP(), solve_MDP(), transition_graph(),
value_function()

Examples

data(Maze)

sol_optimal <- solve_MDP(Maze)
policy(sol_optimal)

# a manual policy (go up and in some squares to the right)
acts <- rep("up", times = length(Maze$states))
names(acts) <- Maze$states
acts[c("s(1,1)", "s(1,2)", "s(1,3)")] <- "right"
sol_manual <- add_policy(Maze, manual_policy(Maze, acts))
policy(sol_manual)

regret(sol_manual, benchmark = sol_optimal)

reward Calculate the Expected Reward of a Policy

Description

This function calculates the expected total reward for a MDP policy given a start state (distribution).
The value is calculated using the value function stored in the MDP solution.

Usage

reward(x, ...)

## S3 method for class 'MDP'
reward(x, start = NULL, epoch = 1L, ...)

Arguments

x a solved MDP object.

... further arguments are passed on.

start specification of the current state (see argument start in MDP for details). By
default the start state defined in the model as start is used. Multiple states can be
specified as rows in a matrix.

epoch epoch for a finite-horizon solutions.
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Details

The reward is typically calculated using the value function of the solution. If these are not available,
then simulate_MDP() is used instead with a warning.

Value

reward() returns a vector of reward values, one for each belief if a matrix is specified.

state start state to calculate the reward for. if NULL then the start state of model is
used.

Author(s)

Michael Hahsler

See Also

Other policy: action(), policy(), policy_evaluation(), q_values(), value_function()

Examples

data("Maze")
Maze
gridworld_matrix(Maze)

sol <- solve_MDP(Maze)
policy(sol)

# reward for the start state s(3,1) specified in the model
reward(sol)

# reward for starting next to the goal at s(1,3)
reward(sol, start = "s(1,3)")

# expected reward when we start from a random state
reward(sol, start = "uniform")

round_stochastic Round a stochastic vector or a row-stochastic matrix

Description

Rounds a vector such that the sum of 1 is preserved. Rounds a matrix such that each row sum up to
1. One entry is adjusted after rounding such that the rounding error is the smallest.

Usage

round_stochastic(x, digits = 7)
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Arguments

x a stochastic vector or a row-stochastic matrix.

digits number of digits for rounding.

Value

The rounded vector or matrix.

See Also

round

Examples

# regular rounding would not sum up to 1
x <- c(0.333, 0.334, 0.333)

round_stochastic(x)
round_stochastic(x, digits = 2)
round_stochastic(x, digits = 1)
round_stochastic(x, digits = 0)

# round a stochastic matrix
m <- matrix(runif(15), ncol = 3)
m <- sweep(m, 1, rowSums(m), "/")

m
round_stochastic(m, digits = 2)
round_stochastic(m, digits = 1)
round_stochastic(m, digits = 0)

simulate_MDP Simulate Trajectories in a MDP

Description

Simulate trajectories through a MDP. The start state for each trajectory is randomly chosen using
the specified belief. The belief is used to choose actions from an epsilon-greedy policy and then
update the state.

Usage

simulate_MDP(
model,
n = 100,
start = NULL,
horizon = NULL,
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epsilon = NULL,
delta_horizon = 0.001,
return_trajectories = FALSE,
engine = "cpp",
verbose = FALSE,
...

)

Arguments

model a MDP model.
n number of trajectories.
start probability distribution over the states for choosing the starting states for the

trajectories. Defaults to "uniform".
horizon epochs end once an absorbing state is reached or after the maximal number of

epochs specified via horizon. If NULL then the horizon for the model is used.
epsilon the probability of random actions for using an epsilon-greedy policy. Default

for solved models is 0 and for unsolved model 1.
delta_horizon precision used to determine the horizon for infinite-horizon problems.
return_trajectories

logical; return the complete trajectories.
engine 'cpp' or 'r' to perform simulation using a faster C++ or a native R implemen-

tation.
verbose report used parameters.
... further arguments are ignored.

Details

A native R implementation is available (engine = 'r') and the default is a faster C++ implementa-
tion (engine = 'cpp').

Both implementations support parallel execution using the package foreach. To enable parallel
execution, a parallel backend like doparallel needs to be available needs to be registered (see
doParallel::registerDoParallel()). Note that small simulations are slower using paralleliza-
tion. Therefore, C++ simulations with n * horizon less than 100,000 are always executed using a
single worker.

Value

A list with elements:

• avg_reward: The average discounted reward.
• reward: Reward for each trajectory.
• action_cnt: Action counts.
• state_cnt: State counts.
• trajectories: A data.frame with the trajectories. Each row contains the episode id, the
time step, the state s, the chosen action a, the reward r, and the next state s_prime. Trajecto-
ries are only returned for return_trajectories = TRUE.
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Author(s)

Michael Hahsler

See Also

Other MDP: MDP(), accessors, actions(), add_policy(), gridworld, policy_evaluation(),
q_values(), reachable_and_absorbing, regret(), solve_MDP(), transition_graph(), value_function()

Examples

# enable parallel simulation
# doParallel::registerDoParallel()

data(Maze)

# solve the POMDP for 5 epochs and no discounting
sol <- solve_MDP(Maze, discount = 1)
sol

# U in the policy is and estimate of the utility of being in a state when using the optimal policy.
policy(sol)
gridworld_matrix(sol, what = "action")

## Example 1: simulate 100 trajectories following the policy,
# only the final belief state is returned
sim <- simulate_MDP(sol, n = 100, horizon = 10, verbose = TRUE)
sim

# Note that all simulations start at s_1 and that the simulated avg. reward
# is therefore an estimate to the U value for the start state s_1.
policy(sol)[1, ]

# Calculate proportion of actions taken in the simulation
round_stochastic(sim$action_cnt / sum(sim$action_cnt), 2)

# reward distribution
hist(sim$reward)

## Example 2: simulate starting following a uniform distribution over all
# states and return all trajectories
sim <- simulate_MDP(sol,

n = 100, start = "uniform", horizon = 10,
return_trajectories = TRUE

)
head(sim$trajectories)

# how often was each state visited?
table(sim$trajectories$s)
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solve_MDP Solve an MDP Problem

Description

Implementation of value iteration, modified policy iteration and other methods based on reinforce-
ment learning techniques to solve finite state space MDPs.

Usage

solve_MDP(model, method = "value_iteration", ...)

solve_MDP_DP(
model,
method = "value_iteration",
horizon = NULL,
discount = NULL,
N_max = 1000,
error = 0.01,
k_backups = 10,
U = NULL,
verbose = FALSE

)

solve_MDP_LP(
model,
method = "lp",
horizon = NULL,
discount = NULL,
verbose = FALSE,
...

)

solve_MDP_TD(
model,
method = "q_learning",
horizon = NULL,
discount = NULL,
alpha = 0.5,
epsilon = 0.1,
N = 100,
U = NULL,
verbose = FALSE

)

Arguments

model an MDP problem specification.
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method string; one of the following solution methods: 'value_iteration', 'policy_iteration',
'lp', 'q_learning', 'sarsa', or 'expected_sarsa'.

... further parameters are passed on to the solver function.

horizon an integer with the number of epochs for problems with a finite planning hori-
zon. If set to Inf, the algorithm continues running iterations till it converges to
the infinite horizon solution. If NULL, then the horizon specified in model will
be used.

discount discount factor in range (0, 1]. If NULL, then the discount factor specified in
model will be used.

N_max maximum number of iterations allowed to converge. If the maximum is reached
then the non-converged solution is returned with a warning.

error value iteration: maximum error allowed in the utility of any state (i.e., the max-
imum policy loss) used as the termination criterion.

k_backups policy iteration: number of look ahead steps used for approximate policy evalu-
ation used by the policy iteration method.

U a vector with initial utilities used for each state. If NULL, then the default of a
vector of all 0s is used.

verbose logical, if set to TRUE, the function provides the output of the solver in the R
console.

alpha step size in (0, 1].

epsilon used for ϵ-greedy policies.

N number of episodes used for learning.

Details

Several solvers are available.

Dynamic Programming:
Implemented are the following dynamic programming methods (following Russell and Norvig,
2010):

• Modified Policy Iteration (Howard 1960; Puterman and Shin 1978) starts with a random
policy and iteratively performs a sequence of
1. approximate policy evaluation (estimate the value function for the current policy using

k_backups and function policy_evaluation(), and
2. policy improvement (calculate a greedy policy given the value function). The algorithm

stops when it converges to a stable policy (i.e., no changes between two iterations).
• Value Iteration (Bellman 1957) starts with an arbitrary value function (by default all 0s) and

iteratively updates the value function for each state using the Bellman equation. The iterations
are terminated either after N_max iterations or when the solution converges. Approximate
convergence is achieved for discounted problems (with γ < 1) when the maximal value
function change for any state δ is δ ≤ error(1 − γ)/γ. It can be shown that this means
that no state value is more than error from the value in the optimal value function. For
undiscounted problems, we use δ ≤ error.
The greedy policy is calculated from the final value function. Value iteration can be seen as
policy iteration with truncated policy evaluation.
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• Prioritized Sweeping (Moore and Atkeson, 1993) approximate the optimal value function
by iteratively adjusting always only the state value of the state with the largest Bellman error.
This leads to faster convergence compared to value iteration which always updates the value
function for all states. This implementation stops iteration when the sum of the priority values
for all states is less than the specified error.

Note that the policy converges earlier than the value function.

Linear Programming:
The following linear programming formulation (Manne 1960) is implemented. For the optimal
value function, the Bellman equation holds:

V ∗(s) = max
a∈A

∑
s′∈S

T (s, a, s′)[R(s, a, s′) + γV ∗(s′)] ∀a ∈ A, s ∈ S

We can find the optimal value function by solving the following linear program:

min
∑
s∈S

V (s)

subject to
V (s) ≥

∑
s′∈S

T (s, a, s′)[R(s, a, s′) + γV (s′)], ∀a ∈ A, s ∈ S

Note:

• The discounting factor has to be strictly less than 1.
• Additional parameters to to solve_MDP are passed on to lpSolve::lp().
• We use the solver in lpSolve::lp() which requires all decision variables (state values) to

be non-negative. To ensure this, for negative rewards, all rewards as shifted so the smallest
reward is 0. This does not change the optimal policy.

Temporal Difference Control:
Implemented are the following temporal difference control methods described in Sutton and Barto
(2020). Note that the MDP transition and reward models are only used to simulate the environment
for these reinforcement learning methods. The algorithms use a step size parameter α (learning
rate) for the updates and the exploration parameter ϵ for the ϵ-greedy policy.
If the model has absorbing states to terminate episodes, then no maximal episode length (horizon)
needs to be specified. To make sure that the algorithm does finish in a reasonable amount of time,
episodes are stopped after 10,000 actions with a warning. For models without absorbing states, a
episode length has to be specified via horizon.

• Q-Learning (Watkins and Dayan 1992) is an off-policy temporal difference method that uses
an ϵ-greedy behavior policy and learns a greedy target policy.

• Sarsa (Rummery and Niranjan 1994) is an on-policy method that follows and learns an ϵ-
greedy policy. The final ϵ-greedy policy is converted into a greedy policy.

• Expected Sarsa (R. S. Sutton and Barto 2018). We implement an on-policy version that uses
the expected value under the current policy for the update. It moves deterministically in the
same direction as Sarsa moves in expectation. Because it uses the expectation, we can set the
step size α to large values and even 1.
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Value

solve_MDP() returns an object of class POMDP which is a list with the model specifications
(model), the solution (solution). The solution is a list with the elements:

• policy a list representing the policy graph. The list only has one element for converged
solutions.

• converged did the algorithm converge (NA) for finite-horizon problems.

• delta final δ (value iteration and infinite-horizon only)

• iterations number of iterations to convergence (infinite-horizon only)

Author(s)

Michael Hahsler
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See Also

Other MDP: MDP(), accessors, actions(), add_policy(), gridworld, policy_evaluation(),
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value_function()
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Examples

data(Maze)
Maze

# use value iteration
maze_solved <- solve_MDP(Maze, method = "value_iteration")
maze_solved
policy(maze_solved)

# plot the value function U
plot_value_function(maze_solved)

# Gridworld solutions can be visualized
gridworld_plot(maze_solved)

# Use linear programming
maze_solved <- solve_MDP(Maze, method = "lp")
maze_solved
policy(maze_solved)

# use modified policy iteration
maze_solved <- solve_MDP(Maze, method = "policy_iteration")
policy(maze_solved)

# finite horizon
maze_solved <- solve_MDP(Maze, method = "value_iteration", horizon = 3)
policy(maze_solved)
gridworld_plot(maze_solved, epoch = 1)
gridworld_plot(maze_solved, epoch = 2)
gridworld_plot(maze_solved, epoch = 3)

# create a random policy where action n is very likely and approximate
# the value function. We change the discount factor to .9 for this.
Maze_discounted <- Maze
Maze_discounted$discount <- .9
pi <- random_policy(Maze_discounted,

prob = c(n = .7, e = .1, s = .1, w = 0.1)
)
pi

# compare the utility function for the random policy with the function for the optimal
# policy found by the solver.
maze_solved <- solve_MDP(Maze)

policy_evaluation(Maze, pi, k_backup = 100)
policy_evaluation(Maze, policy(maze_solved), k_backup = 100)

# Note that the solver already calculates the utility function and returns it with the policy
policy(maze_solved)

# Learn a Policy using Q-Learning
maze_learned <- solve_MDP(Maze, method = "q_learning", N = 100)
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maze_learned

maze_learned$solution
policy(maze_learned)
plot_value_function(maze_learned)
gridworld_plot(maze_learned)

transition_graph Transition Graph

Description

Returns the transition model as an igraph object.

Usage

transition_graph(
x,
action = NULL,
state_col = NULL,
simplify_transitions = TRUE,
remove_unavailable_actions = TRUE

)

plot_transition_graph(
x,
action = NULL,
state_col = NULL,
simplify_transitions = TRUE,
main = NULL,
...

)

curve_multiple_directed(graph, start = 0.3)

Arguments

x object of class MDP.

action the name or id of an action or a set of actions. By default the transition model
for all actions is returned.

state_col colors used to represent the states.
simplify_transitions

logical; combine parallel transition arcs into a single arc.
remove_unavailable_actions

logical; don’t show arrows for unavailable actions.

main a main title for the plot.
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... further arguments are passed on to igraph::plot.igraph().

graph The input graph.

start The curvature at the two extreme edges.

Details

The transition model of a POMDP is a Markov Chain. This function extracts the transition model
as an igraph object.

Value

returns the transition model as an igraph object.

See Also

Other MDP: MDP(), accessors, actions(), add_policy(), gridworld, policy_evaluation(),
q_values(), reachable_and_absorbing, regret(), simulate_MDP(), solve_MDP(), value_function()

Examples

data("Maze")

g <- transition_graph(Maze)
g

plot_transition_graph(Maze)
plot_transition_graph(Maze,

vertex.size = 20,
edge.label.cex = .1, edge.arrow.size = .5, margin = .5

)

## Plot using the igraph library
library(igraph)
plot(g)

# plot with a different layout
plot(g,

layout = igraph::layout_with_sugiyama,
vertex.size = 20,
edge.label.cex = .6

)

## Use visNetwork (if installed)
if (require(visNetwork)) {

g_vn <- toVisNetworkData(g)
nodes <- g_vn$nodes
edges <- g_vn$edges

visNetwork(nodes, edges) %>%
visNodes(physics = FALSE) %>%
visEdges(smooth = list(type = "curvedCW", roundness = .6), arrows = "to")

}
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value_function Value Function

Description

Extracts the value function from a solved MDP.

Usage

value_function(model, drop = TRUE)

plot_value_function(
model,
epoch = 1,
legend = TRUE,
col = NULL,
ylab = "Value",
las = 3,
main = NULL,
...

)

Arguments

model a solved MDP.

drop logical; drop the list for converged, epoch-independent value functions.

epoch epoch for finite time horizon solutions.

legend logical; show legend.

col, ylab, las are passed on to graphics::barplot().

main a main title for the plot. Defaults to the name of the problem.

... further arguments are passed on to graphics::barplot()‘.

Value

the function as a numeric vector with one value for each state.

Author(s)

Michael Hahsler

See Also

Other policy: action(), policy(), policy_evaluation(), q_values(), reward()

Other MDP: MDP(), accessors, actions(), add_policy(), gridworld, policy_evaluation(),
q_values(), reachable_and_absorbing, regret(), simulate_MDP(), solve_MDP(), transition_graph()
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Examples

data("Maze")
sol <- solve_MDP(Maze)
sol

value_function(sol)
plot_value_function(sol)

## finite-horizon problem
sol <- solve_MDP(Maze, horizon = 3)
policy(sol)
value_function(sol)
plot_value_function(sol, epoch = 1)
plot_value_function(sol, epoch = 2)
plot_value_function(sol, epoch = 3)

# For a gridworld we can also plot is like this
gridworld_plot(sol, epoch = 1)
gridworld_plot(sol, epoch = 2)
gridworld_plot(sol, epoch = 3)

Windy_gridworld Windy Gridworld MDP Windy Gridworld MDP

Description

The Windy gridworld MDP example from Chapter 6 of the textbook "Reinforcement Learning: An
Introduction."

Format

An object of class MDP.

Details

The gridworld has the following layout:
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The grid world is represented as a 7 x 10 matrix of states. In the middle region the next states
are shifted upward by wind (the strength in number of squares is given below each column). For
example, if the agent is one cell to the right of the goal, then the action left takes the agent to the
cell just above the goal.

No discounting is used (i.e., γ = 1).

References

Richard S. Sutton and Andrew G. Barto (2018). Reinforcement Learning: An Introduction Second
Edition, MIT Press, Cambridge, MA.

See Also

Other MDP_examples: Cliff_walking, DynaMaze, MDP(), Maze

Other gridworld: Cliff_walking, DynaMaze, Maze, gridworld

Examples

data(Windy_gridworld)
Windy_gridworld

gridworld_matrix(Windy_gridworld)
gridworld_matrix(Windy_gridworld, what = "labels")

gridworld_plot(Windy_gridworld)

# The Goal is an absorbing state
which(absorbing_states(Windy_gridworld))

# visualize the transition graph
gridworld_plot_transition_graph(Windy_gridworld)

# solve using value iteration
sol <- solve_MDP(Windy_gridworld)
sol
policy(sol)
gridworld_plot(sol)
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