Gridworlds in Package markovDP

library(markovDP)

Introduction

Gridworlds represent an easy to explore how Markov Decision Problems (MDPs) and various approaches to solve these problems work. The R package markovDP (Hahsler 2024a) provides a set of helper functions starting with the prefix gw_ to make defining and experimenting with gridworlds easy.

Gridworlds can also easily be extended to Partially Observable Decision Problems (POMDPs) using the R package pomdp (Hahsler 2024b).

Defining a Gridworld

Many gridworlds represent mazes with start and goal states that the agent needs to solve. Mazes can be easily defined. Here we create the Dyna Maze from Chapter 8 in (Sutton and Barto 2018).

x <- gw_maze_MDP(
  dim = c(6, 9),
  start = "s(3,1)",
  goal = "s(1,9)",
  walls = c(
    "s(2,3)", "s(3,3)", "s(4,3)",
    "s(5,6)",
    "s(1,8)", "s(2,8)", "s(3,8)"
  ),
  goal_reward = 1,
  step_cost = 0,
  restart = TRUE,
  discount = 0.95,
  name = "Dyna Maze",
)
x
#> MDP, list - Dyna Maze
#>   Discount factor: 0.95
#>   Horizon: Inf epochs
#>   Size: 47 states / 4 actions
#>   Start: s(3,1)
#> 
#>   List components: 'name', 'discount', 'horizon', 'states', 'actions',
#>     'start', 'transition_prob', 'reward', 'info', 'absorbing_states'

Normalize the model for faster access.

x <- normalize_MDP(x)

Gridworlds are implemented with state names "s(<row>,<col>)", where row and col are locations in the matrix representing the gridworld. The actions are "up", "right", "down", and "left". Conversion between state labels and the position in the matrix (row and column index) can be done with gw_s2rc() and gw_rc2s(), respectively.

The transition graph can be visualized. Note, the transition from the state below the goal state back to the start state shows that the maze restarts the agent once it reaches the goal and collects the goal reward.

gw_plot_transition_graph(x)

A more general way to create gridworlds is implemented in the function gw_init() which initializes a new gridworld creating a matrix of states with given dimensions. Blocked states and absorbing state can be defined. The returned information can be used to build a custom gridworld MDP.

Working with Gridworld MDPs

The gridworld can be accessed as a matrix.

gw_matrix(x)
#>      [,1]     [,2]     [,3]     [,4]     [,5]     [,6]     [,7]     [,8]    
#> [1,] "s(1,1)" "s(1,2)" "s(1,3)" "s(1,4)" "s(1,5)" "s(1,6)" "s(1,7)" NA      
#> [2,] "s(2,1)" "s(2,2)" NA       "s(2,4)" "s(2,5)" "s(2,6)" "s(2,7)" NA      
#> [3,] "s(3,1)" "s(3,2)" NA       "s(3,4)" "s(3,5)" "s(3,6)" "s(3,7)" NA      
#> [4,] "s(4,1)" "s(4,2)" NA       "s(4,4)" "s(4,5)" "s(4,6)" "s(4,7)" "s(4,8)"
#> [5,] "s(5,1)" "s(5,2)" "s(5,3)" "s(5,4)" "s(5,5)" NA       "s(5,7)" "s(5,8)"
#> [6,] "s(6,1)" "s(6,2)" "s(6,3)" "s(6,4)" "s(6,5)" "s(6,6)" "s(6,7)" "s(6,8)"
#>      [,9]    
#> [1,] "s(1,9)"
#> [2,] "s(2,9)"
#> [3,] "s(3,9)"
#> [4,] "s(4,9)"
#> [5,] "s(5,9)"
#> [6,] "s(6,9)"
gw_matrix(x, what = "labels")
#>      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]  
#> [1,] ""      ""   ""   ""   ""   ""   ""   "X"  "Goal"
#> [2,] ""      ""   "X"  ""   ""   ""   ""   "X"  ""    
#> [3,] "Start" ""   "X"  ""   ""   ""   ""   "X"  ""    
#> [4,] ""      ""   "X"  ""   ""   ""   ""   ""   ""    
#> [5,] ""      ""   ""   ""   ""   "X"  ""   ""   ""    
#> [6,] ""      ""   ""   ""   ""   ""   ""   ""   ""
gw_matrix(x, what = "unreachable")
#>       [,1]  [,2]  [,3]  [,4]  [,5]  [,6]  [,7]  [,8]  [,9]
#> [1,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
#> [2,] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE
#> [3,] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE
#> [4,] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
#> [5,] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
#> [6,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

NA represents states that were excluded from the state space since they are not reachable (e.g., walls). Other options for what are "values" (for state values) and "action", but these are only available for solved problems that contain a policy.

Solving a Gridworld

Gridworld MDPs are solved like any other MDP.

sol <- solve_MDP(x, method = "value_iteration")
sol
#> MDP, list - Dyna Maze
#>   Discount factor: 0.95
#>   Horizon: Inf epochs
#>   Size: 47 states / 4 actions
#>   Start: s(3,1)
#>   Solved:
#>     Method: 'value_iteration'
#>     Solution converged: TRUE
#> 
#>   List components: 'name', 'discount', 'horizon', 'states', 'actions',
#>     'start', 'transition_prob', 'reward', 'info', 'absorbing_states',
#>     'solution'

Detailed information about the solution can be accessed.

sol$solution
#> $method
#> [1] "value_iteration"
#> 
#> $policy
#> $policy[[1]]
#>    states         V action
#> 1  s(1,1) 0.9564197  right
#> 2  s(2,1) 0.9085510     up
#> 3  s(3,1) 0.9564197   down
#> 4  s(4,1) 1.0067576  right
#> 5  s(5,1) 1.0597448  right
#> 6  s(6,1) 1.0067576  right
#> 7  s(1,2) 1.0067576  right
#> 8  s(2,2) 0.9564197     up
#> 9  s(3,2) 1.0067576   down
#> 10 s(4,2) 1.0597448   down
#> 11 s(5,2) 1.1155208  right
#> 12 s(6,2) 1.0597448  right
#> 13 s(1,3) 1.0597448  right
#> 14 s(5,3) 1.1742325  right
#> 15 s(6,3) 1.1155208  right
#> 16 s(1,4) 1.1155208   down
#> 17 s(2,4) 1.1742325   down
#> 18 s(3,4) 1.2360342  right
#> 19 s(4,4) 1.3010886  right
#> 20 s(5,4) 1.2360342  right
#> 21 s(6,4) 1.1742325     up
#> 22 s(1,5) 1.1742325  right
#> 23 s(2,5) 1.2360342   down
#> 24 s(3,5) 1.3010886   down
#> 25 s(4,5) 1.3695669  right
#> 26 s(5,5) 1.3010886     up
#> 27 s(6,5) 1.2360342  right
#> 28 s(1,6) 1.2360342  right
#> 29 s(2,6) 1.3010886  right
#> 30 s(3,6) 1.3695669  right
#> 31 s(4,6) 1.4416494  right
#> 32 s(6,6) 1.3010886  right
#> 33 s(1,7) 1.3010886   down
#> 34 s(2,7) 1.3695669   down
#> 35 s(3,7) 1.4416494   down
#> 36 s(4,7) 1.5175257  right
#> 37 s(5,7) 1.4416494     up
#> 38 s(6,7) 1.3695669  right
#> 39 s(4,8) 1.5973955  right
#> 40 s(5,8) 1.5175257  right
#> 41 s(6,8) 1.4416494     up
#> 42 s(1,9) 0.9085510   down
#> 43 s(2,9) 1.8631235     up
#> 44 s(3,9) 1.7699673     up
#> 45 s(4,9) 1.6814689     up
#> 46 s(5,9) 1.5973955     up
#> 47 s(6,9) 1.5175257     up
#> 
#> 
#> $converged
#> [1] TRUE
#> 
#> $delta
#> [1] 5.019446e-05
#> 
#> $iterations
#> [1] 194

Now the policy and the state values are available as a matrix.

gw_matrix(sol, what = "values")
#>           [,1]      [,2]     [,3]     [,4]     [,5]     [,6]     [,7]     [,8]
#> [1,] 0.9564197 1.0067576 1.059745 1.115521 1.174232 1.236034 1.301089       NA
#> [2,] 0.9085510 0.9564197       NA 1.174232 1.236034 1.301089 1.369567       NA
#> [3,] 0.9564197 1.0067576       NA 1.236034 1.301089 1.369567 1.441649       NA
#> [4,] 1.0067576 1.0597448       NA 1.301089 1.369567 1.441649 1.517526 1.597395
#> [5,] 1.0597448 1.1155208 1.174232 1.236034 1.301089       NA 1.441649 1.517526
#> [6,] 1.0067576 1.0597448 1.115521 1.174232 1.236034 1.301089 1.369567 1.441649
#>          [,9]
#> [1,] 0.908551
#> [2,] 1.863123
#> [3,] 1.769967
#> [4,] 1.681469
#> [5,] 1.597395
#> [6,] 1.517526
gw_matrix(sol, what = "actions")
#>      [,1]    [,2]    [,3]    [,4]    [,5]    [,6]    [,7]    [,8]    [,9]  
#> [1,] "right" "right" "right" "down"  "right" "right" "down"  NA      "down"
#> [2,] "up"    "up"    NA      "down"  "down"  "right" "down"  NA      "up"  
#> [3,] "down"  "down"  NA      "right" "down"  "right" "down"  NA      "up"  
#> [4,] "right" "down"  NA      "right" "right" "right" "right" "right" "up"  
#> [5,] "right" "right" "right" "right" "up"    NA      "up"    "right" "up"  
#> [6,] "right" "right" "right" "up"    "right" "right" "right" "up"    "up"

A visual presentation with the state value represented by color (darker is larger), the policy represented by action arrows, and the labels added is also available.

gw_plot(sol)

We see that value iteration found a clear path from the start state towards the goal state following increasing state values.

Experimenting with Solvers

It is interesting to look how different solvers find a solution. We can visualize how the policy and state values change after each iteration. For example, we can stop the algorithm after a given number of iterations and visualize the progress.

sol <- solve_MDP(x, method = "value_iteration", iter_max = 5)
gw_plot(sol, zlim = c(0, 2), sub = "Iteration 5")

The solver creates a warning indicating that the solution has not converged after only 5 iterations. In the visualization, we see that value iteration has expanded values from the goal state up to 5 squares away.

To see how the updates in the solver work, we can use gw_animate() to draw a visualization after each iteration. R markdown documents can use {r, fig.show='animate'} so create an animation using the individual frames.

gw_animate(x, "value_iteration", n = 20, zlim = c(0, 2))

It is easy to see how value iteration propagates value from the goal to the start. In the following, we create animations for more solving methods.

gw_animate(x, "policy_iteration", n = 15, zlim = c(0, 2))

gw_animate(x, "q_learning", n = 15, zlim = c(0, 2), horizon = 1000)

References

Hahsler, Michael. 2024a. markovDP: Infrastructure for Discrete-Time Markov Decision Processes (MDP). https://github.com/mhahsler/markovDP.
———. 2024b. Pomdp: Infrastructure for Partially Observable Markov Decision Processes (POMDP). https://doi.org/10.32614/CRAN.package.pomdp.
Sutton, Richard S., and Andrew G. Barto. 2018. Reinforcement Learning: An Introduction. Second. The MIT Press. http://incompleteideas.net/book/the-book-2nd.html.