Title: | Mining NB-Frequent Itemsets and NB-Precise Rules |
---|---|
Description: | NBMiner is an implementation of the model-based mining algorithm for mining NB-frequent itemsets and NB-precise rules. Michael Hahsler (2006) <doi:10.1007/s10618-005-0026-2>. |
Authors: | Michael Hahsler [aut, cre, cph] |
Maintainer: | Michael Hahsler <[email protected]> |
License: | GPL-2 |
Version: | 0.1-8 |
Built: | 2025-01-02 04:11:11 UTC |
Source: | https://github.com/mhahsler/arulesNBMiner |
This dataset is generated by the method described by Agrawal and Srikant (1994) using the reimplementation in arules which also retains the patterns used in the generation process.
data(Agrawal)
data(Agrawal)
The format is:
transactions
Agrawal.db
itemsets
Agrawal.pat
Agrawal.db
contains the dataset (1000 items/20000 transactions)
and Agrawal.pat
contains the
patterns that were used to create the dataset.
Rakesh Agrawal and Ramakrishnan Srikant (1994). Fast algorithms for mining association rules in large databases. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, editors, Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, pages 487-499, Santiago, Chile.
data(Agrawal) summary(Agrawal.pat) summary(Agrawal.db) ## the data sets was generated with the following code ## Not run: Agrawal.pat <- random.patterns(1000, nPats = 2000, method = "agrawal", lPats = 2, corr = 0.5, cmean = 0.5, cvar = 0.1, iWeight = NULL, verbose = FALSE) Agrawal.db <- random.transactions(1000, 20000, method="agrawal", patterns = Agrawal.pat) ## End(Not run)
data(Agrawal) summary(Agrawal.pat) summary(Agrawal.db) ## the data sets was generated with the following code ## Not run: Agrawal.pat <- random.patterns(1000, nPats = 2000, method = "agrawal", lPats = 2, corr = 0.5, cmean = 0.5, cvar = 0.1, iWeight = NULL, verbose = FALSE) Agrawal.db <- random.transactions(1000, 20000, method="agrawal", patterns = Agrawal.pat) ## End(Not run)
Calls the Java implementation of the depth first search algorithm described in the paper in the references section to mine NB-frequent itemsets of NB-precise rules.
NBMiner(data, parameter, control = NULL)
NBMiner(data, parameter, control = NULL)
data |
object of class transactions. |
parameter |
a list of parameters (automatically converted into an
object of class |
control |
a list of control options (automatically converted into an
object of class |
The parameters can be estimated from the data using NBMinerParameters
.
An object of class itemsets or rules (depending on the rules entry in parameter). The estimated precision is stored in the quality slot.
Michael Hahsler. A model-based frequency constraint for mining associations from transaction data. Data Mining and Knowledge Discovery, 13(2):137-166, September 2006. doi:10.1007/s10618-005-0026-2
NBMinerParameters
,
transactions-class
,
itemsets-class
,
rules-class
data("Agrawal") ## mine param <- NBMinerParameters(Agrawal.db, pi=0.99, theta=0.5, maxlen=5, minlen=1, trim = 0, verb = TRUE, plot=TRUE) itemsets_NB <- NBMiner(Agrawal.db, parameter = param, control = list(verb = TRUE, debug=FALSE)) inspect(head(itemsets_NB)) ## remove patterns of length 1 (noise) i_NB <- itemsets_NB[size(itemsets_NB)>1] patterns <- Agrawal.pat[size(Agrawal.pat)>1] ## how many found itemsets are subsets of the patterns used in the db? table(rowSums(is.subset(i_NB,patterns))>0) ## compare with the same number of the most frequent itemsets itemsets_supp <- eclat(Agrawal.db, parameter=list(supp=0.001)) i_supp <- itemsets_supp[size(itemsets_supp) >1] i_supp <- head(sort(i_supp, by = "support"), length(i_NB)) table(rowSums(is.subset(i_supp,patterns))>0) ## mine NB-precise rules param <- NBMinerParameters(Agrawal.db, pi=0.99, theta=0.5, maxlen=5, rules=TRUE, minlen=1, trim = 0) rules_NB <- NBMiner(Agrawal.db, parameter = param, control = list(verb = TRUE, debug=FALSE)) inspect(head(rules_NB))
data("Agrawal") ## mine param <- NBMinerParameters(Agrawal.db, pi=0.99, theta=0.5, maxlen=5, minlen=1, trim = 0, verb = TRUE, plot=TRUE) itemsets_NB <- NBMiner(Agrawal.db, parameter = param, control = list(verb = TRUE, debug=FALSE)) inspect(head(itemsets_NB)) ## remove patterns of length 1 (noise) i_NB <- itemsets_NB[size(itemsets_NB)>1] patterns <- Agrawal.pat[size(Agrawal.pat)>1] ## how many found itemsets are subsets of the patterns used in the db? table(rowSums(is.subset(i_NB,patterns))>0) ## compare with the same number of the most frequent itemsets itemsets_supp <- eclat(Agrawal.db, parameter=list(supp=0.001)) i_supp <- itemsets_supp[size(itemsets_supp) >1] i_supp <- head(sort(i_supp, by = "support"), length(i_NB)) table(rowSums(is.subset(i_supp,patterns))>0) ## mine NB-precise rules param <- NBMinerParameters(Agrawal.db, pi=0.99, theta=0.5, maxlen=5, rules=TRUE, minlen=1, trim = 0) rules_NB <- NBMiner(Agrawal.db, parameter = param, control = list(verb = TRUE, debug=FALSE)) inspect(head(rules_NB))
Estimate the global negative binomial data model used by the NBMiner and create an appropriate parameter object.
NBMinerParameters(data, trim = 0.01, pi = 0.99, theta = 0.5, minlen = 1, maxlen = 5, rules = FALSE, plot = FALSE, verbose = FALSE, getdata = FALSE)
NBMinerParameters(data, trim = 0.01, pi = 0.99, theta = 0.5, minlen = 1, maxlen = 5, rules = FALSE, plot = FALSE, verbose = FALSE, getdata = FALSE)
data |
the data as a object of class transactions. |
trim |
fraction of incidences to trim off the tail of the frequency distribution of the data. |
pi |
precision threshold |
theta |
pruning parameter |
minlen |
minimum number of items in found itemsets (default: 1). |
maxlen |
maximal number of items in found itemsets (default: 5). |
rules |
mine NB-precise rules instead of NB-frequent itemsets? |
plot |
plot the model? |
verbose |
use verbose output for the estimation procedure. |
getdata |
get also the observed and estimated counts. |
Uses the EM algorithm to estimate the global NB model for the data.
The EM algorithm is used since the zero class (items which do not occur
in the dataset) is not included in the data. The result are the two
NB parameters and
, where
is rescaled by dividing
it by the number of incidences in the data (this is needed by the NBMiner).
Also the real number of items
is a result of the estimation.
theta
and pi
are just taken and added to the resulting
parameter object.
an object of class NBMinerParameter
for NBMiner
.
Michael Hahsler. A model-based frequency constraint for mining associations from transaction data. Data Mining and Knowledge Discovery,13(2):137-166, September 2006.
data("Epub") param <- NBMinerParameters(Epub, trim = 0.05, plot = TRUE, verbose = TRUE) param
data("Epub") param <- NBMinerParameters(Epub, trim = 0.05, plot = TRUE, verbose = TRUE) param